首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
In this Letter, a few new types of interaction solutions to the KdV equation are obtained through a constructed Wronskian form expansion method. The method takes advantage of the forms and structures of Wronskian solutions to the KdV equation, and the functions used in the Wronskian determinants don't satisfy the systems of linear partial differential equations.  相似文献   

2.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

3.
In this Letter, the Exp-function method is generalized to construct N-soliton solutions of a KdV equation with variable coefficients. As a result, 1-soliton, 2-soliton and 3-soliton solutions are obtained, from which the uniform formula of N-soliton solutions is derived. It is shown that the Exp-function method may provide us with a straightforward and effective mathematical tool for generating N-soliton solutions of nonlinear evolution equations in mathematical physics.  相似文献   

4.
Xin Zeng  Xuelin Yong 《Physics letters. A》2008,372(44):6602-6607
In this Letter, a new mapping method is proposed for constructing more exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the (2+1)-dimensional Konopelchenko-Dubrovsky equation and the (2+1)-dimensional KdV equations to illustrate the validity and advantages of the method. As a result, many new and more general exact solutions are obtained.  相似文献   

5.
Changbum Chun 《Physics letters. A》2008,372(16):2760-2766
In this Letter the Exp-function method is applied to obtain new generalized solitonary solutions and periodic solutions of the fifth-order KdV equation. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equations arising in mathematical physics.  相似文献   

6.
With a view to exploring new soliton-like solutions of certain types of nonlinear diffusion-reaction (DR) equations with a variable coefficient, we demonstrate the viability of a method which is the combination of both the symbolic computation technique of Gao and Tian [Y.T. Gao, B. Tian, Comput. Phys. Commun. 133 (2001) 158] and auxiliary equation method of Sirendaoreji [Sirendaoreji, Phys. Lett. A 356 (2006) 124] and used recently for the KdV equation. In particular, the DR equations with quadratic and cubic nonlinearities with a time-dependent velocity in the convective flux term are studied and the existence of soliton-like solutions is shown.  相似文献   

7.
A new approach to the perturbative analysis of dynamical systems, which can be described approximately by soliton solutions of integrable non-linear wave equations, is employed in the case of small-amplitude solutions of the ion acoustic wave equations of plasma physics. Instead of pursuing the traditional derivation of a perturbed KdV equation, the ion velocity is written as a sum of two components: elastic and inelastic. In the single-soliton case, the elastic component is the full solution. In the multiple-soliton case, it is complemented by the inelastic component. The original system is transformed into two evolution equations: An asymptotically integrable Normal Form for ordinary KdV solitons, and an equation for the inelastic component. The zero-order term of the elastic component is a single-soliton or multiple-soliton solution of the Normal Form. The inelastic component asymptotes into a linear combination of single-soliton solutions of the Normal Form, with amplitudes determined by soliton interactions, plus a second-order decaying dispersive wave. Satisfaction of a conservation law by the inelastic component and of mass conservation by the disturbance to the ion density is determined solely by the initial data and/or boundary conditions imposed on the inelastic component. The electrostatic potential is a first-order quantity. It is affected by the inelastic component only in second order. The charge density displays a triple-layer structure. The analysis is carried out through the third order.  相似文献   

8.
A modified Korteweg-de Vries (mKdV) lattice is found to be also a discrete Korteweg-de Vries (KdV) equation. A discrete coupled system is derived from the single lattice equation and its Lax pair is proposed. The coupled system is shown to be related to the coupled KdV and coupled mKdV systems which are widely used in physics.  相似文献   

9.
Exact Periodic Solitary-Wave Solution for KdV Equation   总被引:1,自引:0,他引:1       下载免费PDF全文
A new technique, the extended homoclinic test technique, is proposed to seek periodic solitary wave solutions of integrable systems. Exact periodic solitary-wave solutions for classical KdV equation are obtained using this technique. This result shows that it is entirely possible for the (l + l)-dimensional integrable equation that there exists a periodic solitary-wave.  相似文献   

10.
Based on the Hirota method and the perturbation technique, the N-soliton solution of a generalized Hirota-Satsuma coupled KdV equation is obtained. Further, the N-soliton solution of a complex coupled KdV equation is given by reducing.  相似文献   

11.
Li Zou  Zhen Wang  Zhi Zong 《Physics letters. A》2009,373(45):4142-4151
In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Padé technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.  相似文献   

12.
We study the relation between the centro-affine geometry of star-shaped planar curves and the projective geometry of parametrized maps into RP1. We show that projectivization induces a map between differential invariants and a bi-Poisson map between Hamiltonian structures. We also show that a Hamiltonian evolution equation for closed star-shaped planar curves, discovered by Pinkall, has the Schwarzian KdV equation as its projectivization. (For both flows, the curvature evolves by the KdV equation.) Using algebro-geometric methods and the relation of group-based moving frames to AKNS-type representations, we construct examples of closed solutions of Pinkall’s flow associated with periodic finite-gap KdV potentials.  相似文献   

13.
H.C. Hu  Y. Liu 《Physics letters. A》2008,372(36):5795-5798
New positon, negaton and complexiton solutions for the Hirota-Satsuma coupled KdV system are constructed by means of the Darboux transformation with zero seed solution. The new positon, negaton and complexiton solutions are singular and given out both analytically and graphically.  相似文献   

14.
Fajun Yu 《Physics letters. A》2009,373(41):3730-3733
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.  相似文献   

15.
李玉奇 《中国物理快报》2008,25(8):2735-2738
A truncation for the Laurent series in the Padnleve analysis of the KdV equation is restudied. When the truncation occurs the singular manifold satisfies two compatible fourth-order PDEs, which are homogeneous of degree 3. Both of the PDEs can be factored in the operator sense. The common factor is a third-order PDE, which is homogeneous of degree 2. The first few Invariant manifolds of the third-order PDE are studied. We find that the invariant manifolds of the third-order PDE can be obtained by factoring the invariant manifolds of the KdV equation. A numerical solution of the third-order PDE facts about the third-order PDE. is also presented. The solution reveals some interesting  相似文献   

16.
Employing the method which can be used to demonstrate the infinite conservation laws for the standard Kortewegde Vries (KdV) equation, we prove that the variable-coeFficient KdV equation under the Painlevé test condition also possesses the formal conservation laws.  相似文献   

17.
In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (−) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation.  相似文献   

18.
Frobenius integrable decompositions are introduced for partial differential equations. A procedure is provided for determining a class of partial differential equations of polynomial type, which possess specified Frobenius integrable decompositions. Two concrete examples with logarithmic derivative Bäcklund transformations are given, and the presented partial differential equations are transformed into Frobenius integrable ordinary differential equations with cubic nonlinearity. The resulting solutions are illustrated to describe the solution phenomena shared with the KdV and potential KdV equations.  相似文献   

19.
The bilinear form of a coupled modified KdV equations with non-uniformity terms is given and a few soliton solutions are obtained. Furthermore, the multisoliton of the coupled system is expressed by Pfaffian.  相似文献   

20.
《Physics letters. A》2006,351(6):403-412
Taking the coupled KdV system as a simple example, analytical and nonsingular complexiton solutions are firstly discovered in this Letter for integrable systems. Additionally, the analytical and nonsingular positon–negaton interaction solutions are also firstly found for S-integrable model. The new analytical positon, negaton and complexiton solutions of the coupled KdV system are given out both analytically and graphically by means of the iterative Darboux transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号