首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 457 毫秒
1.
The prevailing theoretical quark and gluon momentum,orbital angular momentum and spin operators,satisfy either gauge invariance or the corresponding canonical commutation relation,but one never has these operators which satisfy both except the quark spin.The conflicts between gauge invariance and the canonical quantization requirement of these operators are discussed.A new set of quark and gluon momentum,orbital angular momentum and spin operators,which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation,are proposed.To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts.The same conflicts also exist in QED and quantum mechanics,and have been solved in the same manner.The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

2.
With the Coulomb gauge, the Chern-Simons-Georgi-Glashow (CSGG) model is quantized in the Dirac formalism for the constrained system. Combining the Gauss law and Coulomb gauge consistency condition, the difference between the Schwinger angular momentum and canonical angular momentum of the system is found to be an anomalous spin. The reason for this result lies in the fact that the Schwinger energy momentum tensor and the canonical one have different symmetry properties in the presence of the Chern-Simons term.  相似文献   

3.
The magnetic moment of 2+1 state for 10Be are calculated and investigated in terms of single particle orbits for protons and neutrons under the framework of ab initio Monte Carlo shell model method in an emax = 3 model space. The reduced matrix elements of orbital and spin angular momentum are evaluated. It is found that the orientations of orbital angular momentum in diferent single particle orbits are consistent. Conversely,the orientations of spin in diferent single particle orbits tend to be chaotic. The nuclear magnetic moment of 2+1 state for 10Be is obtained as 1.006N and is discussed in regards to the contribution of orbital and spin angular momentum both for protons and neutrons. The corresponding g-factor is also given.  相似文献   

4.
Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter(AdS) space and frame-independent light-front wavefunctions of hadrons in(3 + 1)-dimensional physical space-time,thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD,a useful framework which describes the correspondence between theories in a modified AdS 5 background and confining field theories in physical space-time.To a first semiclassical approximation,where quantum loops and quark masses are not included,this approach leads to a single-variable light-front Schro¨dinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum.The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time.The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.We give an overview of the light-front holographic approach to strongly coupled QCD.In particular,we study the photon-to-meson transition form factors(TFFs) FMγ(Q 2) for γ→ M using light-front holographic methods.The results for the TFFs for the η and η ' mesons are also presented.Some novel features of QCD are discussed,including the consequences of confinement for quark and gluon condensates.A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.  相似文献   

5.
In light of the developments of the chiral constituent quark model(χ~(CQM)) in studying low energy hadronic matrix elements of the ground-state baryons, we extend this model to investigate their transition properties.The magnetic moments of transitions from the J~P=3/2~+ decuplet to J~P=1/2~+ octet baryons are calculated with explicit valence quark spin, sea quark spin and sea quark orbital angular momentum contributions. Since the experimental data is available for only a few transitions, we compare our results with the results of other available models. The implications of other complicated effects such as chiral symmetry breaking and SU(3) symmetry breaking arising due to confinement of quarks are also discussed.  相似文献   

6.
高建华 《中国物理 C》2007,31(12):1181-1184
There exists a large local relative orbital angular momentum between produced partons along the direction opposite to the reaction plane in the early stage of non-central heavy-ion collisions. This initial local orbital angular momentum can lead to quark polarization along the same direction due to spin-orbital coupling in QCD. We present the quark polarization by using hard thermal loop gluon propagator for quark-quark scattering in quark-gluon plasma and compare it with the result obtained from the static potential model.  相似文献   

7.
梁文峰  吴明  刘慧  陈相松 《中国物理快报》2008,25(12):4227-4229
We adopt a gauge-invariant definition to calculate the spin and orbital angular momenta of a so-called Ith order Laguerre-Gaussian laser. The results reveal that photons on the axis of the beam may carry an orbital angular momentum of (l - 1)h besides lh per photon. For the spin, we obtain a more reasonable expression proportional to the beam intensity instead of the gradient of the intensity as previously derived. We also discuss how to experimentally discriminate the angular momentum expressions given here and those commonly accepted in the literature.  相似文献   

8.
简要介绍了夸克的发现、核子的夸克模型 ,详细讨论了夸克模型中核子内夸克自旋结构和极化轻子-核子深度非弹散射测量出的夸克自旋结构中的矛盾 .指出这个矛盾是由于对夸克自旋理解的混淆.最后还讨论了规范不变性和正则量子化两大物理学原则在夸克、电子轨道角动量上出现的矛盾. A simple introduction of the discovery of quark and the constituent quark model of nucleon have been given. The contradiction between the quark spin structure of nucleon of the constituent quark model and the measured one in the polarized deep inelastic lepton nucleon scattering has been explained in detail. It is elucidated that the so called “proton spin crisis” is due to quark spin confusion. The incompatibility between the requirement of gauge invariance and ...  相似文献   

9.
10.
江金环  刘赟  李子平 《中国物理》2004,13(2):153-158
The Maxwell-Chern-Simons gauge theory coupled to a complex scalar field is quantized in the Becchi-Rouet-Stora-Tyutin path integral formalism. Based on the symmetries of a constrained canonical (Hamiltonian) system, we obtain the quantal conserved angular momentum of the system under the global symmetry transformation. It is shown that fractional spin also appears at the quantum level. The canonical Ward identities for this system are derived under local gauge transformation.  相似文献   

11.
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

12.
The prevailing theoretical quark and gluon momentum, orbital angular momentum and spin operators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never has these operators which satisfy both except the quark spin. The conflicts between gauge invariance and the canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics, and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

13.
《Physics letters. A》2020,384(14):126284
We report a study of the momentum, angular momentum, and helicity of circularly polarized Airy beams propagating in free space. By using the vector angular spectrum representation, the explicit analytical expressions for the electric and magnetic field components of circularly polarized Airy beams are derived in detail. To overcome the drawbacks of classical kinematics formulae when applied to structured light beams, a general canonical approach is introduced to describe the momentum, angular momentum and helicity of Airy beams. Numerical simulation results for the spatial distributions of the canonical momentum, spin and orbital angular momentum, as well as the helicity densities are presented and discussed. This study may provide useful insights into the dynamical properties of Airy beams that may be important in several applications, including the optical control, micromanipulation, and information processing.  相似文献   

14.
辛俊丽  梁九卿 《中国物理 B》2012,21(4):40303-040303
We study quantum–classical correspondence in terms of the coherent wave functions of a charged particle in two- dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.  相似文献   

15.
The electronic structure of nitrogen trifluoride was investigated by combining the high-resolution electron momentum spectroscopy with the high-level calculations. The experimental binding energy spectra and the momentum distributions of each orbital were compared with the results of Hartree-Fock, density functional theory (DFT), and symmetry-adapted- cluster configuration-interaction (SAC-CI) methods. SAC-CI and DFT-B3LYP with the aug-cc-pVTZ basis set can well reproduce the binding energy spectra and the observed momentum distributions of the valence orbitals except 1 a2 and 4e orbitals. It was found that the calculated momentum distributions using DFT-B3LYP are even better than those using the high-level SAC-CI method.  相似文献   

16.
We study the long-time limit behavior of the solution to an atom's master equation. For the first time we derive that the probability of the atom being in the α-th (α = j + 1 -jz, j is the angular momentum quantum number, jz is the z-component of angular momentum) state is {(1 - K/G)/[1 - (K/G)2j+1]}(K/G)^α-1 as t → +∞, which coincides with the fact that when K/G 〉 1, the larger the a is, the larger the probability of the atom being in the α-th state (the lower excited state) is. We also consider the case for some possible generaizations of the atomic master equation.  相似文献   

17.
Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To clarify the issue, we assess the delocalized and localized molecular orbitals from an experimental view using electron momentum spectroscopy. The delocalized and localized molecular orbitals based on various theoretical models for CH4, NH3, and H20 are compared with the experimental momentum distributions. Our results show that the delocalized molecular orbitals rather than the localized ones can give a direct interpretation of the experimental (e, 2e) results.  相似文献   

18.
We use the strong field approximation with a time window function controlling the release time of electrons to study the intra-cycle and inter-cycle interferences in few-cycle intense laser pulses impinging on He. The diffraction fringes, i.e., the vertical stripe-like structure, observed in the experimental two-dimensional photoelectron momentum distributions of Gopal et al. (2009 Phys. Rev. Lett. 103 053001) have been attributed to the interplay of the intra- and inter-cycle interferences. The pure numerical calculations by solving the time-dependent Schrrdinger equation are also performed and the results are compared with the experimental measurements directly. It has been found that the position of the stripe-like structure can be used to determine the duration of the laser pulses used in experiments.  相似文献   

19.
Based on the theoretical models for light nuclei, the calculations of reaction cross sections and the angular distributions for d +^8Li reaction are performed. Since all of the particle emissions are from the compound nucleus to the discrete levels, the angular momentum coupling effect in pre-equilibrium mechanism is taken into account. The three- body break-up process and the recoil effect are involved. The theoretical calculated results are compared to existing experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号