首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.  相似文献   

2.
Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study sound propagation from the transitional area(shelfbreak)to deep water.Numerical simulations with different source depths are first performed,from which we reach the following conclusions.When the source is located near the sea surface,sound will be strongly attenuated by bottom losses in a range-independent oceanic environment,whereas it can propagate to a very long range because of the continental slope.When the source is mounted on the bottom in shallow water,acoustic energy will be trapped near the sound channel axis,and it converges more evidently than the case where the source is located near the sea surface.Then,numerical simulations with different source ranges are performed.By comparing the relative energy level in the vertical direction between the numerical simulations and the experimental data,the range of the air-gun source can be approximated.  相似文献   

3.
Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.  相似文献   

4.
Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in heavy ion collisions at HIRFL-CSR energy. The source evolution is described by the relativistic hydrodynamics in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and compared with the interferometry results obtained by the usual Gaussian formula fit. It is found that the first- order source function moments can describe the source sizes. The ratio of the normalized standard deviation σ to the first-order moment R, σ/R, is sensitive to the shape of the source function.  相似文献   

5.
For the next-generation beyond extreme ultraviolet lithography(EUVL) sources, gadolinium(Gd) plasma with emission wavelength at 6.7 nm seems to be the leading candidate. Similar to the Sn target 13.5 nm light source, ion debris mitigation is one of the most important tasks in the laser-produced Gd plasma EUV source development. In this paper,a dual-laser-pulse scheme, which uses a low energy pulse to produce a pre-plasma and a main pulse after a time delay to shoot the pre-plasma, is employed to mitigate the energetic ion generation from the source. Optimal conditions(such as pre-pulse energy and wavelength, and the time delay between the pre-pulse and the main pulse for mitigating the ion energy) are experimentally obtained, and with the optimal conditions, the peak of the ion energy is found to be reduced to1/18 of that of a single laser pulse case. Moreover, the combined effect by applying ambient gas to the dual-pulse scheme for ion debris mitigation is demonstrated, and the result shows that the yield of Gd ions is further reduced to around 1/9 of the value for the case with dual laser pulses.  相似文献   

6.
陈骏  余洪伟 《中国物理快报》2004,21(12):2362-2364
The effects of quantum electromagnetic fluctuations upon the motion of a test charged particle are examined in a cylindrical spacetime in which one spatial is compactified. The mean squared fluctuations in the velocity and position of the test particle are calculated. It is found that the random motion of the test particle will be anisotropic. The possible consequences for theories with extra compactified spatial dimensions are discussed.  相似文献   

7.
Recently,an action principle for the D→4 limit of Einstein-Gauss-Bonnet gravity has been proposed.It is a special scalar-tensor theory that belongs to the family of Horndeski gravity.It also has well defined D→3 and D→2 limits.In this work,we examine this theory in three and four dimensions in the Bondi-Sachs framework.In both three and four dimensions,we find that there is no news function associated with the scalar field,which means that there is no scalar propagating degree of freedom in the theory.In four dimensions,the mass-loss formula is not affected by the Gauss-Bonnet term.This is consistent with the fact that there is no scalar radiation.However,the effects of the Gauss-Bonnet term are quite significant in the sense that they arise just one order after the integration constants and also arise in the quadrupole of the gravitational source.  相似文献   

8.
The cycle of black hole (BH) spin proposed by Li and Paczynski (henceforth CYCLP) is compared with a more naturad model (henceforth CYC03), in which energy and angular momentum are transferred from a rotating BH to a region of some widths by the closed magnetic field fines. It turns out that the efficiency of converting theaccreted mass into the radiation energy in the CYC03 is less than that estimated in the CYCLP, while the BH mass and entropy in the CYC03 are greater than those in the CYCLP. It is shown that the features of the CYC03 are insensitive to the power-law index indicating the variation of the magnetic field in the disc.  相似文献   

9.
First-principles calculations are used to investigate the mechanical and thermodynamic properties of cubic YH2 at different pressures and temperatures. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) method is used to describe the exchange-correlation energy in the present work. The calculated equilibrium lattice constant a and bulk modulus B are in good accordance with the available experimental values. According to the Born-Huang criteria for mechanical stability, elastic constants are calculated from the strain-induced stress method in a pressure range from 0 to 67.1 GPa. Isotropic wave velocities and sound velocities are discussed in detail. It is found that the Debye temperature decreases monotonically with the increase of pressure and that YH2 has low anisotropy in both longitudinal and shear-wave velocities. The calculated elastic anisotropic factors indicate that YH2 has low anisotropy at zero pressure and that its elastic anisotropy increases as pressure increases. Through the quasi-harmonic Debye model, in which phononic effects are considered, the thermodynamic properties of YH2, such as the relations of (V-Vo)/Vo to the temperature and the pressure, the dependences of heat capacity Cv and thermal expansion coefficient a on temperature and pressure ranging from 0 to 2400 K and from 0 to 65 GPa, respectively, are also discussed.  相似文献   

10.
Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.  相似文献   

11.
Theories involving extra dimensions, a low (TeV) string scale and bulk singlet neutrinos will produce an effective neutrino magnetic moment which may be large (10−11μB). The effective magnetic moment increases with neutrino energy, and therefore high energy reactions are most useful for limiting the allowed number of extra dimensions. We examine constraints from both neutrino-electron scattering and also astrophysical environments. We find that supernova energy loss considerations require a number of extra dimensions, n≥2, for an electron neutrino-bulk neutrino Yukawa coupling of order 1.  相似文献   

12.
Special relativity is generalized to extra dimensions and quantized energy levels of particles are obtained. By calculating the probability of particles' motion in extra dimensions at high temperature of the early universe, it is proposed that the branes may have not existed since the very beginning of the universe, but formed later. Meanwhile, before the formation, particles of the universe may have filled in the whole bulk, not just on the branes. This scenario differs from that in the standard big bang cosmology in which all particles are assumed to be in the 4D spacetime. So, in brane models, whether our universe began from a 4D big bang singularity is questionable. A cosmological constraint on the number of extra dimensions is also given which favors N ≥ 7.  相似文献   

13.
The kinetic energy release of fragment ions produced by the interaction of femtosecond laser pulse radiation with diatomic and linear triatomic molecules N_2, CO, CO_2 and CS_2 is investigated. In the case of linear polarization, angles at which the kinetic energy release of ions has the maximum value are different from the alignment of molecules though the kinetic energy release of fragment atomic ions depends on the angle between the laser polarization vector and the detection axis of the time-of-flight. For the diatomic molecules, the critical internuclear distance in multielectron dissociative ionization with a circularly polarized light is larger than that with a linearly polarized light. For linear triatomic molecules, our data indicate that a concerted Coulomb explosion process is a universal phenomenon in the interaction of molecules with intense laser fields, even in the circularly polarized regime. During two C-O (or C-S) bonds breaking simultaneously, the C ion obtained larger energy in circular polarization than that in the linear polarization. Different variations of kinetic energy release between the diatomic and the linear triatomic molecules are discussed.  相似文献   

14.
We discuss the scenario with TeV-scale right-handed neutrinos, which are accessible at future colliders, while holding down tiny seesaw-induced masses and sizable couplings to the standard-model particles. The signal with tri-lepton final states and large missing transverse energy is appropriate for studying collider signatures of the scenario with extra spatial dimensions. We show that the LHC experiment generally has a potential to discover the signs of extra dimensions and the origin of small neutrino masses.  相似文献   

15.
余观夏 《物理学报》2008,57(1):164-169
The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with $\epsilon_{{\rm r}1}=-1/(1+\delta)+\i\gamma$ and $\mu_{{\rm r}1}=-(1+\delta)+\i\gamma$. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.  相似文献   

16.
We investigate a class of cosmological solutions of Einstein’s field equations in higher dimensions with a cosmological constant and an ideal fluid matter distribution as a source. We discuss the dynamical evolution of the universe subject to two constraints that (i) the total volume scale factor of the universe is constant and (ii) the effective energy density is constant. We obtain various interesting new dynamics for the external space that yield a time varying deceleration parameter including oscillating cases when the flat/curved external and curved/flat internal spaces are considered. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the extra dimensions.  相似文献   

17.
We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.  相似文献   

18.
The absolute optical oscillator strength density spectra of nitric oxide in the energy region of 5.0-22.0 eV have been measured by a high-resolution fast-electron energy loss spectrometer. With the calculated results obtained by the multiscattering self-consistent-field method and channel characteristics, the strongly overlapped spectra in the energy region of 7.5-9.3 eV have been analysed and the corresponding partially vibrationally resolved optical oscillator strengths have been estimated from the experimental spectra.  相似文献   

19.
We report a search for effects of large extra spatial dimensions in pp collisions at a center-of-mass energy of 1.8 TeV with the D0 detector, using events containing a pair of electrons or photons. The data are in good agreement with the expected background and do not exhibit evidence for large extra dimensions. We set the most restrictive lower limits to date, at the 95% C.L. on the effective Planck scale between 1.0 and 1.4 TeV for several formalisms and numbers of extra dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号