首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the crossed Andreev reflections between two graphene leads connected by a narrow superconductor. When the leads are, respectively, of the n and p type, we find that electron elastic cotunneling and local Andreev reflection are both eliminated even in the absence of any valley-isospin or spin polarizations. We further predict oscillations of both diagonal and cross conductances as a function of the distance between the graphene-superconductor interfaces.  相似文献   

2.
By combining the Dirac equation of relativistic quantum mechanics with the Bogoliubov-de Gennes equation of superconductivity we investigate the electron-hole conversion at a normal-metal-superconductor interface in graphene. We find that the Andreev reflection of Dirac fermions has several unusual features: (1) the electron and hole occupy different valleys of the band structure; (2) at normal incidence the electron-hole conversion happens with unit efficiency in spite of the large mismatch in Fermi wavelengths at the two sides of the interface; and, most fundamentally: (3) away from normal incidence the reflection angle may be the same as the angle of incidence (retroreflection) or it may be inverted (specular reflection). Specular Andreev reflection dominates in weakly doped graphene, when the Fermi wavelength in the normal region is large compared to the superconducting coherence length.  相似文献   

3.
李传新  汪萨克  汪军 《中国物理 B》2017,26(2):27304-027304
We theoretically study the differential conductance of a graphene/graphene superconductor junction, where the valley polarization of Dirac electrons is considered in the nonsuperconducting region. It is shown that the subgap conductance will increase monotonically with the valley-polarization strength when the chemical potential μ is near the Dirac point μ≤ 3?(? is the superconducting gap), whereas it will decrease monotonically when μ is far away from the Dirac point, μ≥ 5?.The former case is induced by the specular Andreev reflection while the retro-reflection accounts for the later result. Our findings may shed light on the control of conductance of a graphene superconductor junction by valley polarization.  相似文献   

4.
《Current Applied Physics》2018,18(9):1087-1094
We investigate the Andreev tunneling and Josephson current in graphene irradiated with high-frequency linearly polarized light. The corresponding stroboscopic dynamics can be solved using Floquet mechanism which results in an effective stationary theory to the problem exhibiting an anisotropic Dirac spectrum and modified pseudospin-momentum locking. When applied to an irradiated normal graphene - superconductor (NS) interface, such analysis reveal Andreev reflection (AR) to become an oscillatory function of the optical strength. Specifically we find that, by varying the polarization direction we can both suppress AR considerably or cause the Andreev transport to remain maximum at sub-gap excitation energies even in the presence of Fermi level mismatch. Furthermore, we study the optical effect on the Andreev bound states (ABS) within a short normal-graphene sheet, sandwiched between two s-wave superconductors. It shows redistribution of the low energy regime in the ABS spectrum, which in turn, has major effect in shaping the Josephson super-current. Subjected to efficient tuning, such current can be sufficiently altered even at the charge neutrality point. Our observations provide useful feedback in regulating the quantum transport in Dirac-like systems, achieved via controlled off-resonant optical irradiation on them.  相似文献   

5.
In order to consider the Dirac-like spectrum of graphene we employ the Bogoliubov de Gennes–Dirac formalism to determine the quasiparticle Andreev levels in an NS surface (normal–superconductor). The normal region is characterized by a width L while the superconducting region is semi-infinite and both regions are made of doped graphene. The quasiparticle energy spectrum is originated by the Andreev reflections that occur in the NS interface. It is shown that this spectrum depends on the width of the normal region and the Fermi energy in each region. When the Fermi energy in the normal metal is lower than the gap of the superconductor region, the spectrum is affected by specular Andreev reflections. The equation that is obtained to find the spectrum is very general and we solve it for some particular cases. We find that the energy spectrum oscillates when the Fermi energy in graphene is changed. Finally we obtain under some approximations an equation for the energy spectrum which is similar in structure as those obtained for an INS conventional junction.  相似文献   

6.
We investigate transport through hybrid structures consisting of two normal metal leads connected via tunnel barriers to one common superconducting electrode. We find clear evidence for the occurrence of nonlocal Andreev reflection and elastic cotunneling through a superconductor when the separation of the tunnel barrier is comparable to the superconducting coherence length. The probability of the two processes is energy dependent, with elastic cotunneling dominating at low energy and nonlocal Andreev reflection at higher energies. The energy scale of the crossover is found to be the Thouless energy of the superconductor, which indicates the phase coherence of the processes. Our results are relevant for the realization of recently proposed entangler devices.  相似文献   

7.
Oscillations of Andreev states in clean ferromagnetic films   总被引:2,自引:0,他引:2  
We investigate the influence of the exchange field on the Andreev bound states in a ferromagnetic ( F) film backed on one side by a superconductor ( S). Our model accounts for diffusive reflection at the outer surface and possible backscattering at the FS interface. Phase shifting of the Andreev level by the exchange field results in an oscillatory behavior of the density of states of F as a function of the layer thickness. We show that our results agree quantitatively with recent experiments.  相似文献   

8.
We study the Andreev reflection(AR)at the interface of the topological insulator with hexagonal warping and superconductor junction.Due to the hexagonal warping effect,the double ARs are found in a certain range of the incident angle,where for one incident electron beam,two beams of holes are reflected back.Interestingly,both the beams of holes are reflected as retro-AR on the same side of the normal line of the interface but with different reflection angles,different from the previously reported double AR with one retro-AR and one specular-AR.The double reflections owing to the warping effect show the optics-like property of the Dirac fermion and can stimulate the double reflections of light in anisotropic crystals.In addition,we find that the double ARs are dependent on the hexagonal warping parameter nonmonotonically,and in an intermediate strength the double AR phenomenon is prominent,providing a possibility to explore the warping parameter of topological insulators.  相似文献   

9.
We report a theoretical investigation of the spin-dependent Andreev reflection at the interface of a graphene-based ferromagnet/superconductor junction. It is found that the ferromagnetic exchange interaction in the ferromagnet can suppress Andreev retroreflection but enhance the specular Andreev reflection. There is a transition between the specular Andreev reflection and Andreev retroreflection at which the shot noise vanishes and the Fano factor has a universal value. The present work provides a new method of detecting the specular Andreev reflection, which can be experimentally tested within the present-day technique.  相似文献   

10.
Room temperature ferromagnetism in both transition-metals doped and undoped semiconductor thin films and nanostructures challenges our understanding of the magnetism in solids. In this report, we performed the magnetic measurement and Andreev reflection spectroscopy study on undoped Indium-Tin oxide (ITO) thin films and bulk samples. The magnetic measurement results of thin films show that the total magnetization/cm2 is thickness independent. Prominent ferromagnetism signal was also discovered in bulk samples. Spin polarized electron transports were probed on ITO thin film/superconductor interface and bulk samples surface/superconductor interface. Based on the magnetic measurement results and spin polarization measurement data, we propose that the ferromagnetism in this material originates from the surface spin polarization and this surface polarization may also explain the room temperature ferromagnetism discovered in other undoped oxide semiconductor thin films and nanostructures.  相似文献   

11.
A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.  相似文献   

12.
Ju Peng 《Physics letters. A》2008,372(21):3878-3881
We theoretically report a nonlocal Andreev reflection in an Aharonov-Bohm interferometer, which is a three-terminal normal metal/superconductor (NS) mesoscopic hybrid system. It is found that this nonlocal Andreev reflection is sensitive to the systematic parameters, such as the bias voltages, the quantum dot levels, and the external magnetic flux. If we set the chemical potential of one normal metal lead equal to zero, the electronic current in the lead results from two competing processes: the quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero electronic current signals unambiguously the existence of this nonlocal Andreev reflection.  相似文献   

13.
We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.  相似文献   

14.
In this paper, conductance of spin and electron in graphene-based ferromagnet—superconductor (FS) and parallel and antiparallel ferromagnet–superconductor–ferromagnet (FSF) junctions are studied. Using the Dirac–Bogoliubov–de Gennes equations, Andreev and normal reflections are obtained and then using these coefficients, conductance of spin and electrons are calculated at the FS interface(s) analytically. As a result, both the energy dependence of spin and charge differential conductances are investigated and a comparison between electron and spin transport is done in this paper. Effect of exchange energy of ferromagnet h on conductances is studied too.  相似文献   

15.
Nonlocal currents, in devices where two normal-metal terminals are contacted to a superconductor, are determined using the circuit theory of mesoscopic superconductivity. We calculate the conductance associated with crossed Andreev reflection and electron transfer between the two normal-metal terminals, in addition to the conductance from direct Andreev reflection and quasiparticle tunneling. Dephasing and proximity effect are taken into account. PACS 74.45.+c, 74.25.Fy, 73.23.-b  相似文献   

16.
Because the valleys in the band structure of graphene are related by time-reversal symmetry, electrons from one valley are reflected as holes from the other valley at the junction with a superconductor. We show how this Andreev reflection can be used to detect the valley polarization of edge states produced by a magnetic field. In the absence of intervalley relaxation, the conductance GNS=(2e2/h)(1-cosTheta) of the junction on the lowest quantum Hall plateau is entirely determined by the angle Theta between the valley isospins of the edge states approaching and leaving the superconductor. If the superconductor covers a single edge, Theta=0 and no current can enter the superconductor. A measurement of GNS then determines the intervalley relaxation time.  相似文献   

17.
Hong Li 《中国物理 B》2022,31(12):127301-127301
The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator (TI) ferromagnet/superconductor (FM/SC) junction. The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory. It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection. The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections. There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero. These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.  相似文献   

18.
The ground state properties of a high spin magnetic impurity and its interaction with an electronic spin are probed via Andreev reflection. We see that through the charge and spin conductance one can effectively estimate the interaction strength, the ground state spin and magnetic moment of any high spin magnetic impurity. We show how a high spin magnetic impurity at the junction between a normal metal and superconductor can contribute to superconducting spintronics applications. Particularly, while spin conductance is absent below the gap for Ferromagnet-Insulator-Superconductor junctions we show that in the case of a Normal metal-High spin magnetic impurity-Normal Metal-Insulator-Superconductor (NMNIS) junction it is present. Further, it is seen that pure spin conduction can exist without any accompanying charge conduction in the NMNIS junction.  相似文献   

19.
We analyze the charge transport between a one-dimensional weakly interacting electron gas and a superconductor within the scaling approach in the basis of scattering states. We derive the renormalization group equations, which fully account for the intrinsic energy dependence due to Andreev reflection. A strong renormalization of the corresponding reflection phase is predicted even for a perfectly transparent metal-superconductor interface. The interaction-induced suppression of the Andreev conductance is shown to be highly sensitive to the normal-state resistance, providing a possible explanation of experiments with carbon-nanotube/superconductor junctions by Morpurgo et al. [Science 286, 263 (1999)].  相似文献   

20.
Transport characteristics of relativistic electrons through graphene-based d-wave superconducting double barrier junction and ferromagnet/d-wave superconductor/normal metal double junction have been investigated based on the Dirac–Bogoliubov–de Gennes equation. We have first presented the results of superconducting double barrier junction. In the subgap regime, both the crossed Andreev and nonlocal tunneling conductance all oscillate with the bias voltage due to the formation of Andreev bound states in the normal metal region. Moreover, the critical voltage beyond which the crossed Andreev conductance becomes to zero decreases with increasing value of superconducting pair potential α. In the presence of the ferromagnetism, the MR through graphene-based ferromagnet/ d-wave superconductor/normal metal double junction has been investigated. It is shown that the MR increases from exchange splitting h 0=0 to h 0=E F (Fermi energy), and then it goes down. At h 0=E F, MR reaches its maximum 100. In contrast to the case of a single superconducting barrier, Andreev bound states also manifest itself in the zero bias MR, which result in a series of peaks except the maximum one at h 0=E F. Besides, the resonance peak of the MR can appear at certain bias voltage and structure parameter. Those phenomena mean that the coherent transmission can be tuned by superconducting pair potential, structure parameter, and external bias voltage, which benefits the spin-polarized electron device based on the graphene materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号