首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The dynamics of working gas pressure changes in the plasma focus (PF) chambers were studied by using the chamber with a built-in manometer as part of the ING-102 neutron generator (2.5 MeV neutron yield 106÷107 neutrons/pulse). Investigations were carried out during high-voltage training and neutron emission operation mode. The studies were executed while filling the chamber with various gas mixtures. For operation with a deuterium-tritium mixture, a sealed-off chamber with a built-in gas generator was used. After the primary filling of the PF chambers with a gas mixture, there is a systematic decrease in pressure by Δp = (5 ÷ 50) ·10−3 Torr (∼0,7 ÷ 7 Pa) after each shot of the chamber.The change in the shape of breakdown curves Ubr(p) in the interelectrode gap of the chamber after each series of shots was studied. That made it possible to assess the optimal number of shots during high-voltage training of the PF chamber.  相似文献   

2.
A laptop neutron source suited for the most demanding field or laboratory applications is presented. It is based on laser ablation of CD2 primary targets, plasma acceleration of the D+ ions, and their irradiation of secondary CD2 targets. The deuterium–deuterium (D-D) fusion reaction is induced in the secondary target, according to the values of fusion cross-section versus deuteron energy, which show a significant probability also at relatively low ion energies. The experiments were completed in the PALS laboratory, Prague, detecting monoenergetic neutrons at 2.45 MeV with an emission flux of about 109 neutrons per laser shot. Other experiments demonstrating the possibility to induce D-D events were performed at IPPLM, Warsaw, and at INFN-LNS, Catania, where the deuterons were accelerated at about 4 MeV and 50 keV, respectively. In the last case, a low laser intensity and a post-ion acceleration system were employed. A special interaction chamber, under vacuum, is proposed to develop a new source of monochromatic neutrons or thermalized distribution of neutrons  相似文献   

3.
Neutrons (2.45MeV) from deuterium cluster fusion induced by the intense femtosecond (3Ors) laser pulse are experimentally demonstrated. The average neutron yield 103 per shot is obtained. It is found that the yield slightly increases with the increasing laser spot size. No neutron can be observed when the laser intensity I 〈 4.3 × 10^15 W/cm^2.  相似文献   

4.
In this Letter we report the effect of two different cathode structures - tubular and squirrel cage, on neutron output from a miniature plasma focus device. The squirrel cage cathode is typical of most DPF sources, with an outer, tubular envelope that serves as a vacuum housing, but does not carry current. The tubular cathode carries the return current and also serves as the vacuum envelope, thereby minimizing the size of the DPF head. The maximum average neutron yield of (1.82±0.52)×105 n/shot for the tubular cathode at 4 mbar was enhanced to (1.15±0.2)×106 n/shot with squirrel cage cathode at 6 mbar operation. These results are explained on the basis of a current sheath loading/mass choking effect. The penalty for using a non-transparent cathode negates the advantage of the smaller size of the DPF head.  相似文献   

5.
This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)2) in a gas jet subjected to intense femtosecond laser pulses (170mJ, 70fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5nm in radius and the laser intensity used was 3×1017W/cm2.The measured maximum and average energies of deuterons produced in the laser--cluster interaction were 60 and 13.5keV, respectively. From DD collisions of energetic deuterons, a yield of 2.5(±0.4)×104 fusion neutrons of 2.45MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5×105 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.  相似文献   

6.
An innovative accelerator-based neutron source for boron neutron capture therapy has started operation at the Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using 7Li(p,n)7Be threshold reaction.In the article, techniques to detect neutron and gamma-rays at the facility are described. Gamma radiation is measured with NaI and BGO gamma-spectrometers. The total yield of neutrons is determined by measuring the 477 keV γ-quanta from beryllium decay. For the rough analysis of the generated neutron spectrum we used bubble detectors. As the epithermal neutrons are of interest for neutron capture therapy the NaI detector is used as activation detector. We plan to use a time-of-flight technique for neutron spectra measurement. To realize this technique a new solution of short time neutron generation is proposed.  相似文献   

7.
At present, high energy electron linear accelerators (LINACs) producing photons with energies higher than 10 MeV have a wide use in radiotherapy (RT). However, in these beams fast neutrons could be generated, which results in undesired contamination of the therapeutic beams. These neutrons affect the shielding requirements in RT rooms and also increase the out-of-field radiation dose to patients. The neutron flux becomes even more important when high numbers of monitor units are used, as in the intensity modulated radiotherapy. Herein, to evaluate the exposure of patients and medical personnel, it is important to determine the full radiation field correctly. A model of the dual photon beam medical LINAC, Siemens ONCOR, used at the University Hospital Centre of Osijek was built using the MCNP611 code. We tuned the model according to measured photon percentage depth dose curves and profiles. Only 18 MV photon beams were modeled. The dependence of neutron dose equivalent and energy spectrum on field size and off-axis distance in the patient plane was analyzed. The neutron source strength (Q) defined as a number of neutrons coming from the head of the treatment unit per x-ray dose (Gy) delivered at the isocenter was calculated and found to be 1.12 × 1012 neutrons per photon Gy at isocenter. The simulation showed that the neutron flux increases with increasing field size but field size has almost no effect on the shape of neutron dose profiles. The calculated neutron dose equivalent of different field sizes was between 1 and 3 mSv per photon Gy at isocenter. The mean energy changed from 0.21 MeV to 0.63 MeV with collimator opening from 0 × 0 cm2 to 40 × 40 cm2. At the 50 cm off-axis the change was less pronounced. According to the results, it is reasonable to conclude that the neutron dose equivalent to the patient is proportional to the photon beam-on time as suggested before. Since the beam-on time is much higher when advanced radiotherapy techniques are used to fulfill high conformity demands, this makes the neutron flux determination even more important. We also showed that the neutron energy in the patient plane significantly changes with field size. This can introduce significant uncertainty in dosimetry of neutrons due to strong dependence of the neutron detector response on the neutron energy in the interval 0.1–5 MeV.  相似文献   

8.
 介绍了利用飞行时间技术测量Z箍缩装置单氘丝中子发射。实验发现,Z箍缩中子发射过程中,伴随产生很强的硬X射线,利用铝丝阵产生硬X射线的实验,建立较好的硬X射线屏蔽,大大减弱了它的辐射强度。所采用的双闪烁探测器中子探测系统,进行了3个发次的单氘丝负载实验,确认产生了聚变氘氘中子。4172发次实验测量结果表明,中子产额1.5×109,中子能量为(2.45±0.26) MeV。实验结合分幅照相数据分析认为,峰电流和负载未能很好匹配,等离子体存在不稳定现象。  相似文献   

9.
We create the random complex media of high-power density in low-energy nanosecond vacuum discharges. Hard X-ray emission efficiency, generation of energetic ions (∼1 MeV) and neutrons, trapping and releasing of fast ions and/or X-rays from interelectrode aerosol ensembles are the subject of our study. The neutrons from DD microfusion, as well as the modelling of some interstellar nuclear burning due to microexplosive nucleosynthesis are discussed. The value of neutron yield from DD fusion in interelectrode space varies and amounts to ∼105–10 7/4π per shot under ≈ 1 J of total energy deposited to create all discharge processes Article presented at the International Conference on the Frontiers of Plasma Physics and Technology, 9–14 December 2002, Bangalore, India.  相似文献   

10.
超强超短脉冲激光诱发大尺度氘团簇聚变   总被引:3,自引:3,他引:0  
 利用低温脉冲气阀获得了平均含有3×103氘原子的氘团簇。在飞秒激光装置上实现了氘团簇聚变,每发中子产额为1×103。中子产额对激光功率密度敏感,保持激光能量不变,随着激光焦斑的变大,DD聚变中子产额逐渐增加,最大值出现在激光焦斑为470 mm时;继续增大激光焦斑,没有观察到中子信号。实验结果还表明激光氘团簇聚变发生的区域主要是激光辐照的等离子体热区,此区域内邻近氘团簇库仑爆炸发射的高能氘离子碰撞引发聚变反应。  相似文献   

11.
In this paper the photonuclear interaction induced by 10 MeV electron beam generating high-intensity neutrons is studied. Since the results depend on the target material, the calculations are performed for Pb, Ta and W targets which have high Z, in a simple geometry. MCNPX code has been used to simulate the whole process. Also, the results of photon generation has been compared with the experimental results to evaluate the reliability of the calculation. The results show that the obtained neutron flux can reach up to 1012 n/cm2/s with average energies of 0.9 MeV, 0.4 MeV and 0.9 MeV for these three elements respectively with the maximum heat deposited as 3000 W/c3, 4500 W/c3 and 6000 W/c3.  相似文献   

12.
Hyperpolarized (hp) 83Kr (spin I = 9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp 83Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% 83Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the 83Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The 83Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7 s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp 83Kr T1 differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp 83Kr at 9.4 T field strength is found to be 180 times below the theoretical upper limit.  相似文献   

13.
The ITER International Fusion Energy Organization has solicited IRSN Laboratory for Neutron Metrology and Dosimetry to study the possibility to calibrate, in monoenergetic neutron fields at 14 and 2.45 MeV, the neutron detectors to be placed inside the future fusion reactor. In addition to the estimate of the necessary irradiation times, the dose equivalent rates from some of the neutron activated beam line elements had been calculated to consider the cooling time mandatory before access. Neutron activation calculations have been performed with the Fluka Monte-Carlo code. The resulting dose equivalent rates depend strongly of the neutron beam intensity as well as the neutron energy. In the worst case, for 14 MeV neutrons at an emission rate of 1012 s−1, a cooling time of 24 h would be needed for a close access to the shadow cone. Several days would be mandatory in the case of the target holder.  相似文献   

14.
The neutron energy spectrum (4 Torr deuterium) was determined from 30 m flight histograms.—An average energy of approximately 100±20 keV of the neutron producing deuterons within an assumed cone angle of approximately 40 degrees along thez-axis was calculated by means of the target beam model.—Shadow bar techniques reveal that only 10% of the neutrons are produced in the ≈1 cm long focus.—Experimental time of flight analysis confirms that the ion spectrum extends from less than 70 to greater than 400 keV. The electron spectrum in 8 Torr hydrogen follows a ≈3 keV Boltzmann distribution, but demonstrates the presence of nonthermal >100 keV electrons.  相似文献   

15.
The results of experiments on neutron generation caused by nanosecond discharges in a deuterium medium are presented. The experiments are performed using two types of potential electrodes (anodes). One of them is fabricated from steel foil, and the other is composed of tungsten wires with split ends. In both cases, a deuterium-saturated zirconium plate is employed as a flat grounded cathode. With a tungsten anode, deuterium ions generated by field ionization are demonstrated to constitute the determining part of ions involved in the acceleration process and the neutron yield arising from the reaction 2H(d, n)3He is about four times greater than that inherent to the steel-foil anode. In this case, the maximum neutron yield is 1.2 × 104 neutron/ shot, and the duration of neutron emission from the cathode is 1.5 ns.  相似文献   

16.
The properties of ZnS(Ag)/6LiF samples with three different mass ratios were studied. The study showed that the EJ426 sample with the mass ratio of 3:1 had the highest detection efficiency of thermal neutrons, which was 32.4% in the experiment. Furthermore, this sample had the largest charge spectrum. The light yield of its surface at the average value of the charge spectrum was approximately 8.01 × 103 photons/neutron. The gamma sensitivity of the sample was better than 10−6 at the threshold of 350 photoelectrons. Therefore, EJ426 is a good candidate for a position-sensitive thermal neutron detector.  相似文献   

17.
The results are presented from a number of experiments in search for neutrons from the heavy water electrolysis with use of different palladium cathodes. The upper limit for the yield of neutrons from a cell with a 2.34 cm3 palladium cathode, which operated continuously for seven days, is 0.2 neutron/s (0.01 neutron/s per gram of palladium). This limit is 105 times lower than the yield claimed recently by Fleischamann and Pons.  相似文献   

18.
An innovative intense neutron generator of 14 MeV neutrons for the irradiation of future reactor materials is presented. Negative pions are produced inside a 5–10 T magnetic field by an intense deuteron beam interacting with a carbon target. The pions and the muons from pion decay in flight are collected in the backward direction and stopped in a deuterium-tritium-hydrogen target of high density. Using an 18 MW deuteron beam at 1.5 GeV (12 mA=7.5 × 1016d/s), circa 1016gt /s can be generated, decaying to muons of which up to 1015 µ/s stop in the D/T/H mixture. Assuming Xc=100 fusions per muon, the µCF source produces 14 MeV neutrons with a source strength of up to 1017 n/s, i.e. a neutron power of 200 kW. The environment of the second target, the neutron source itself, can be made to resemble part of the Tokamak ring to be simulated for irradiation test samples.  相似文献   

19.
Basic operational characteristics of the plasma focus are considered from design perspectives to develop powerful radiation sources. Using these ideas we have developed two compact plasma focus (CPF) devices operating in neon with high performance and high repetition rate capacity for use as an intense soft X-ray (SXR) source for microelectronics lithography. The NX1 is a four-module system with a peak current of 320 kA when the capacitor bank (7.8 μF×4) is charged to 14 kV. It produces 100 J of SXR per shot (4% wall plug efficiency) giving at 3 Hz, 300 W of average SXR power into 4π. The NX2 is also a four-module system. Each module uses a rail gap switching 12 capacitors each with a capacity of 0.6 μF. The NX2 operates with peak currents of 400 kA at 11.5 kV into water-cooled electrodes at repetition rates up to 16 Hz to produce 300 W SXR in burst durations of several minutes. SXR lithographs are taken from both machines to demonstrate that sufficient SXR flux is generated for an exposure with only 300 shots. In addition, flash electron lithographs are also obtained requiring only ten shots per exposure. Such high performance compact machines may be improved to yield over 1 kW of SXR, enabling sufficient exposure throughput to be of interest to the wafer industry. In deuterium the neutron yield could be over 1010 neutrons per second over prolonged bursts of minutes  相似文献   

20.
Most of the GEM/THGEM-based microdosimetric detectors presented in the literature simulate 2 μm of tissue which results in a flat neutron dose-equivalent response in the MeV region. The objective of this work was to introduce a neutron microdosimeter with a more extended flat response. In this regard, a THGEM-based microdosimeter with plexiglas walls, simulating 1 μm of tissue was designed and constructed. Its performance was investigated by both simulation and experimentation to determine the microdosimetric quantity of “lineal energy”.In the simulation study, lineal energy distribution, mean quality factor and dose-equivalent response of the microdosimeter for eleven neutron energies from 10 keV to 14 MeV, along with the energy spectrum of 241Am-Be neutrons, were calculated by the Geant4 simulation toolkit. Obtained lineal energy distributions were compatible with the distributions determined by a Rossi counter. Also, the mean quality factors agreed well with the values reported by the ICRU report 40 which confirmed tissue equivalent behavior of the microdosimeter. They were different from the effective quality factor values within 15% between 20 keV and 14 MeV. This led to a flat dose-equivalent response with 20% difference from a median value of 0.82 in the above energy range which was an improvement compared with other THGEM-based detectors, simulating 2 μm of tissue. In spite of the satisfactory determination of the dose-equivalent, the microdosimeter had low detection sensitivity.In the experimental study, the measured lineal energy distribution of 241Am-Be neutrons was in agreement with the simulated distribution. Further, the measured mean quality factor and dose-equivalent differed by 1.5% and 3.5%, respectively, from the calculated values. Finally, it could be concluded that the investigated microdosimeter reliably determined the desired dose-equivalent value of each neutron field with every energy spectrum lying between 20 keV and 14 MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号