首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Xin Zhang  Fugen Wu 《Physics letters. A》2010,374(9):1192-1196
We investigated waveguides in acoustic band-gap materials consisting of steel cylinders in a liquid with viscous damping. Numerical results show that when the viscous penetration depth is comparable to the structural length scale, linear defect states fall in complete acoustic band gaps forming waveguides. It is also found that the magnitude of the viscosity in the liquid has an influence on the frequency of waveguides, that large viscous damping can make the defect modes ascend. An expected frequency of waveguides can be obtained by modulating the viscous damping parameter θ.  相似文献   

2.
In fluid-structure interaction systems, baffles as a dynamic damping device are being widely used to suppress the fluid sloshing motion. Meanwhile, natural and dynamic behaviors of such systems are significantly influenced by the baffle parameters, such as the baffle number, the installation location, the inner-hole diameter and the liquid fill height. This paper intends to numerically investigate the parametric eigen characteristics, by the coupled structural-acoustic finite element method (FEM), of baffled cylindrical liquid-storage tank. According to the symmetric two-field formulation, a test FEM program is developed, in which the reduced integration for avoiding the shear and membrane locking and the modified shear correction factor as well as degenerated 8- and 6-node shell elements and 3-D trilinear acoustic elements are used. Through the comparison with the available analytic solutions of no-baffled axisymmetric tank, the validity of the test program and theoretical work is verified. Next, with the verified test FEM program, various combinations of major baffle parameters are intensively examined, in order for the parametric baffle effects on the natural frequency of baffled tanks.  相似文献   

3.
An approximate method is brought forward to predict the acoustic pressure based on the surface velocity. It is named Element Radiation Superposition Method (ERSM). The study finds that each element in Acoustic Transfer Vector (ATV) equals the acoustic pressure radiated by the corresponding surface element vibrating in unit velocity and other surface elements keep still, that is the acoustic pressure radiated by the corresponding baffled piston vibrating in unit velocity. So, it utilizes the acoustic pressure radiated by a baffled piston to establish the transfer relationship between the surface velocity and the acoustic pressure. The total acoustic pressure is obtained through summing up the products of the surface velocity and the transfer quantity. It adopts the regular baffle to fit the actual baffle in order to calculate the acoustic pressure radiated by the baffled piston. This approximate method has larger advantage in calculating speed and memory space than Boundary Element Method. Numerical simulations show that this approximate method is reasonable and feasible.  相似文献   

4.
A new acoustic metamaterial plate is presented for the purpose of suppressing flexural wave propagation. The metamaterial unit cell is made of a plate with a lateral local resonance (LLR) substructure which consists of a four-link mechanism, two lateral resonators and a vertical spring. The substructure presents negative Young’s modulus property in certain frequency range. We show theoretically and numerically that two large low-frequency band gaps are obtained with different formation mechanisms. The first band gap is due to the elastic connection with the foundation while the second is induced by the lateral resonances. Besides, four-link mechanisms can transform the flexural wave into the longitudinal vibration which stimulates the lateral resonators to vibrate and to generate inertial forces for absorbing the energy and thus preventing the wave propagation. Frequency response function shows that damping from the vertical spring has little influence on the band gaps, although the damping can smooth the variation of frequency response (see the dotted line in Figs. 10 and 11). Increasing the damping of the lateral resonators may broaden the second band gap but deactivate its effect. This study provides guidance for flexibly tailoring the band characteristics of the metamaterial plate in noise and vibration controls.  相似文献   

5.
Shear viscosity and effective shear modulus, quantities related to the complex viscosity, have been measured as functions of frequency for five polydimethylsiloxanes commonly used as damper fluids. Maximum energy dissipation is obtained by realizing a damper whose damping constant times the shear viscosity divided by the product of effective shear modulus and moment of inertia of the inertia member equals one. Experiments show that in this tuning the dissipated energy when polydimethylsiloxanes are used as damping fluids can be as much as a factor of two higher than the maximum dissipated energy when using Newtonian fluid.  相似文献   

6.
Axisymmetric vibrations of a viscous-fluid-filled piezoelectric sphere, with radial polarization, submerged in a compressible viscous fluid medium are investigated. The oscillations are harmonically driven by an axisymmetrically applied electric potential difference across the surface of the shell. A theoretical formulation cast the piezoelectric shell problem into a corresponding problem of an elastic shell with the contribution of piezoelectricity confined to slightly modified in vacuum natural frequencies and their associated mode shapes. It is noted that the fluid inside the shell will have a dominating influence on the vibrational characteristics of the submerged shell. The circular components of the natural frequency spectra closely follow those of the fluid-filled shell in vacuo. Furthermore, the corresponding damping components of those natural frequencies are rather small, making acoustic radiation and under-damped oscillation possible for an infinite number of natural frequencies. The characteristics of natural frequencies are elucidated using a fluid-filled polyvinglindene fluoride (PVDF) shell submerged in both air and water as an example. It is found that the piezoelectric parameters that contribute to the shell's natural frequencies is of a small order for thin PVDF shells, and is thereby negligible. It is noted that, with the mechanical constant typically associated with piezoelectric materials, fluid viscosity could have a significant effect on some vibrations. In certain cases, a natural frequency associated with a minimum viscous damping and a maximum of total damping (indicating highly efficient acoustic radiation) is possible with such a frequency.The vibrational characteristics, fluid loading, and energy flow are evaluated for a fluid-filled PVDF shell submerged in air and water. The inclusion of fluid inside the shell is shown to produce various narrow band peaks responses, vibrational absorbing frequencies, and non-dissipating frequencies. Those vibrational characteristics could have many potential applications. For example, the interior fluid could offer the option of generating a desired narrow band near resonant sound radiation while keeping power dissipation due to fluid viscosity to a minimum. Those well-defined narrow band characteristics also open up possibilities of using a vibrating, fluid-filled shell as a micro scale sensor for sensing and detection applications.  相似文献   

7.
The theory of aerodynamic sound is reformulated with account taken of the influence of viscosity in the source flow on the sound emission in free space. This is based on the Ffowcs Williams form of the Lighthill equation. The source flow is assumed to be determined by a localized vorticity field and characterized by low Mach numbers and high Reynolds numbers. It is found that the acoustic pressure emitted by the viscous vortex motion is composed of a quadrupole and two kinds of monopole. The Reynolds stress in the source flow is decomposed into isotropic and non-isotropic parts. The non-isotropic part leads to the quadrupole wave derived by Möhring, while the isotropic part is related to one of the monopole-like waves radiated when the total kinetic energy changes. The other monopole wave is associated with entropy production by viscous dissipation of the kinetic energy. All three components are influenced by viscosity.  相似文献   

8.
We present an improved model for the dissipation and dispersion in an acoustic resonator filled with xenon near its critical temperature Tc. We test the model with acoustic measurements in stirred xenon that have a temperature resolution of (T - Tc)/Tc approximately 7 x 10(-6). The model includes the frequency-dependent bulk viscosity calculated numerically from renormalization-group theory and it includes critical-point adsorption. Because the density of adsorbed xenon exceeds the critical density, the bulk viscosity's effect on surface dissipation is reduced, thereby improving the agreement between theory and experiment.  相似文献   

9.
为考察气体第二粘性(体积粘性)对正激波内部流动的影响机制,数值求解含第二粘性的一维Navier-Stokes方程组.结果表明:第二粘性对激波内部的密度、热流和能量分布等物理量具有抹平效应,导致热流和熵流的峰值减小、激波厚度增加,体积粘性耗散的增加使得一部分机械能转化为内能;考虑第二粘性所计算的密度分布和激波厚度大为改善,与实验数据吻合较好;当马赫数为1.2≤Ma≤10,激波内部的Knudsen数满足0.12≤Kn≤0.4,对于马赫数Ma≤4.0的激波内部流动,考虑第二粘性的连续流Navier-Stokes方程组能够准确地模拟正激波结构.  相似文献   

10.
D. Laveder  T. Passot  P.L. Sulem 《Physics letters. A》2013,377(23-24):1535-1541
The randomly driven Cohen–Kulsrud–Burgers equation is used to study the influence of viscous intermediate shocks (IS) on Alfvénic turbulence. Some of these structures are unstable and undergo gradient collapse leading, as the viscosity is reduced, to increasingly intermittent dissipation bursts. The slow decay at intermediate scales of stable IS prevents the existence of a usual inertial range. Furthermore, the dissipation is unable to adiabatically compensate for the energy injection, making the total energy sensitive to the viscosity parameter. Turbulence thus looses its universal character. Preliminary simulations extend these conclusions to magnetohydrodynamic equations with anisotropic viscosity, typical of strongly magnetized plasmas.  相似文献   

11.
In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. The pair correlation function, the mean square displacement, the static structure factor, and the bond angle correlation function characterizing the structural properties, and the velocity autocorrelation function with Fourier spectrum function characterizing the single-particle motion have been calculated for different values of coupling constant r and viscous damping constant vf. The results show that the system will coagulate quickly with increasing viscous damping constant and coupling constant, and the critical value of friction parameter decreases with increasing the coupling constant in the system.  相似文献   

12.
Sound propagation in monodisperse emulsions with arbitrary volume concentrations is studied theoretically using a cell model. It is assumed that emulsion cells are bounded by thin and imponderable rigid shells allowing realization of the minimum energy dissipation principle with viscous acoustic losses. Solutions covering many particular cases and wide parameter and variable ranges have been obtained. These solutions are suitable for studying acoustic properties of emulsions and suspensions, marine sediments, fogs, and smoke, as well as elastoviscous materials with solid or liquid inclusions, etc. Sound propagation and absorption in emulsions and suspensions are considered in more detail. The experimental data in the literature is compared.  相似文献   

13.
We present a sensitive measurement of the dissipation and the effective viscosity of a simple confined liquid (octamethylcyclotetrasiloxane) using an atomic force microscope. The experimental data show that the damping and the effective viscosity increase and present oscillations as the gap between the cantilever tip and the surface is diminished. To our knowledge, the damping and the viscosity modulation are reported here with such good accuracy for the first time. Such an experimental result is different from what has been reported earlier where only a continuous increase of the damping and the viscosity are observed.  相似文献   

14.
Piezoelectric shunt damping is an emerging field of research. In recent years, a multitude of different electrical circuits have been developed aiming to increase the damping performance and robustness. Synchronized switch damping on inductor (SSDI) is a semi-active control technique that utilizes a passive inductance to build-up a voltage on the piezoceramics that is synchronized with the mechanical vibration. For a single mode excitation the voltage inversion should occur at the moments of maximum deformation, but for multimodal vibrations such a switching law may not be optimal.In this paper a novel switching law for bimodal vibrations is presented using a modal observer. An enhanced voltage build-up is generated by utilizing the vibration energy of the second mode. The amplification of dissipated energy is calculated in an analytical way using normalized parameters, yielding a general result which includes the influence of the frequency and amplitude ratio of the excitation signal. Measurements on a clamped beam test rig are conducted in order to validate the proposed method. An increase of nearly 350 percent in energy dissipation compared to the classical SSDI has been achieved. Furthermore, the increase in energy dissipation is higher than for a previously suggested, comparable switching law.  相似文献   

15.
Active modal control simulation of vibro-acoustic response of a fluid-loaded plate is presented. The active modal control of the vibro-acoustic response is implemented using piezoelectric actuators/sensors. The active modal damping is added to the coupled system via negative velocity feedback. The feedback gain between the piezoelectric actuators/sensors for the modal control is obtained using the in-vacuo modal matrix and the incompressible fluid-loaded modal matrix. The modal control performance of structural vibration and acoustic radiation of a baffled plate is numerically studied. It is shown that the proposed method increases the modal damping ratio and achieves reduction in the mean square velocity and the sound power for given modes of the fluid-loaded plate.  相似文献   

16.
The linearized equations of viscous fluid flow are used to analyze the diffraction of a time-harmonic acoustic plane wave by a circular aperture in a rigid plane screen. Arbitrary aperture size and arbitrary angle of incidence are considered. Sets of dual integral equations are derived for the diffracted velocity and pressure fields, and are solved by analytic reduction to sets of linear algebraic equations. In the case of normal incidence, numerical results are presented for the fluid velocity in the aperture and the power absorption due to viscous dissipation. The theoretical results for power absorption are compared to previously obtained results from high amplitude acoustic experiments in air. The conditions under which the dissipation predicted by linear theory becomes significantare quantified in terms of the fluid viscosity and sound speed, the acoustic frequency, and the aperture radius.  相似文献   

17.
We report an experimental study of the sound produced by the bursting of a thin liquid film, which initially closes an overpressurized cylindrical cavity. There is a need for a deep understanding of the phenomenon, which can be very useful in numerous practical cases. For instance, in the nature, the volcanologists observe the bursting of large, elongated, gas-bubbles at the surface of lava lakes and record the associated sound emission. One can wonder which pieces of information they can get from such acoustic measurements. For a didactic purpose, we provide also the reader with all the theoretical background necessary for the understanding of the physical processes that govern the various characteristics of the acoustic signals: the cavity geometry governs the frequency; the viscous dissipation and the radiation are responsible for the damping; the acoustic energy informs about the characteristic time associated with the film-rupture more than about the energy initially loaded in the cavity.  相似文献   

18.
刘丹晓  刘克 《应用声学》2011,30(4):241-247
从声学角度出发,考虑粘性耗散、非线性效应及管型结构变化的影响,利用伽辽金法,对锥型热声谐振管内的一维声场进行了数值模拟研究,对谐振管结构参数对声场的影响进行了分析,给出了锥型管内压比随谐振管结构参数变化的规律,通过与圆柱型直管的比较,揭示了锥型管在抑制谐波及提高压比等方面的优越性。  相似文献   

19.
The problem of flow and heat transfer of an electrically conducting viscoelastic fluid over a continuously stretching sheet in the presence of a uniform magnetic field is analyzed for the case of power-law variation in the sheet temperature. The fluid viscosity and thermal conductivity are assumed to vary as a function of temperature. The basic equations comprising the balance laws of mass, linear momentum, and energy modified to include the electromagnetic force effect, the viscous dissipation, internal heat generation or absorption and work due to deformation are solved numerically.  相似文献   

20.
Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices. Thin films are reasonably hard and thermally stable but quite fragile. The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles. In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work. The flow is affected by variations in the viscous forces, along with viscous dissipation effects and Marangoni convection. A time-constrained magnetic field is applied in the normal direction to the flow system. The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables. The homotopy analysis method is employed to find the solution to the resultant equations. It is noticed in this study that the flow characteristics decline with augmentation of magnetic, viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters. Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number. The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form. A comparison of current work with established results is carried out, with good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号