首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

2.
We investigate the dynamics of quantum discord in a system consisting of two Tavis-Cummings models, each of which contains two atoms driven by a classical field. We compare the dynamics of quantum discord for the system with that of entanglement and show that quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution. Furthermore, we examine the influence of the initial states and the classical field on the discord dynamics and find that the value of quantum discord can be improved by adjusting the classical driving field. Finally, the quantum discord of two atoms in dissipative cavity is also discussed.  相似文献   

3.
4.
Dynamics of a system of two-level atoms interacting simultaneously with classical and quantized modes are analyzed. Both atom and cavity are assumed to interact with classical fields. The possibility of using this system as a quantum computer that solves the knapsack problem is discussed.  相似文献   

5.
We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise.The cavity is initially prepared in the vacuum state.Generally,the entanglement of two atoms decreases with the intensity of the thermal fields and the coupling strength of the two-level atoms to the thermal fields.However,we find that the entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the classical driving fields in the presence of white noise.  相似文献   

6.
In this article, a system of two two-level atoms interacting with a single-mode quantized electromagnetic field in a lossless resonant cavity via a multi-photon transition is considered. The quantum Fisher information, negativity, classical Fisher information, and reduced von Neumann entropy for the two atoms are investigated. We found that the number of photon transitions plays an important role in the dynamics of different information quantifiers in the cases of two symmetric and two asymmetric atoms. Our results show that there is a close relationship between the different quantifiers. Also, the quantum and classical Fisher information can be useful for studying the properties of quantum states which are important in quantum optics and information.  相似文献   

7.
We investigate the influence of nonlinear Kerr-like medium and dipole-dipole interaction on the dynamics of quantum discord in Tavis-Cummings model with phase decoherence. We show that in the resonance case (i) atom-field quantum discord rapidly decays with phase decoherence and doesn't exist the stationary state quantum discord, but the stationary state quantum discord appears if we choose the suitable values of Kerr coefficient χ and dipole-dipole interaction Ω, (ii) the quantum discord of two atoms survives in the stationary state and the amount of stationary state quantum discord could be improved by adjusting the values of χ and Ω. In the non-resonance case, the arbitrary bipartite quantum discord of the system could not be completely destroyed by the phase decoherence and can be improved by applying nonlinear Kerr-like medium and dipole-dipole interaction.  相似文献   

8.
The paradigm of the two-level atom is revisited and its perturbative analysis is discussed in view of the principle of duality in perturbation theory. The models we consider are a two-level atom and an ensemble of two-level atoms both interacting with a single radiation mode. The aim is to see how the latter can be actually used as an amplifier of quantum fluctuations to the classical level through the thermodynamic limit of a very large ensemble of two-level atoms [M. Frasca, Phys. Lett. A 283 (2001) 271] and how can remove Schrödinger cat states. The thermodynamic limit can be very effective for producing both classical states and decoherence on a quantum system that evolves without dissipation. Decoherence without dissipation is indeed an effect of a single two-level atom interacting with an ensemble of two-level atoms, a situation that proves to be useful to understand recent experiments on nanoscale devices showing unexpected disappearance of quantum coherence at very low temperatures.  相似文献   

9.
Considering a double JC model, this paper investigates the quantum discord dynamics of two isolated moving two-level atoms each interacting with a single-mode thermal cavity field, and studies the effect of the atomic motion and the field-mode structure on quantumdiscord. The results show that, on the one hand the quantum discord evolves periodically with time and the periods are affected by the atomic motion and the field-mode structure; on the other hand, the quantum discord still can capture the quantum correlation between the two atoms when the entanglement is zero. It is interesting to note that the quantum discord can be effectively preserved by controlling the field-mode structure parameter  相似文献   

10.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况。结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态。  相似文献   

11.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况。结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态。  相似文献   

12.
利用并发度和线性熵作为纠缠度量研究了两个驱动两能级原子和真空场相互作用系统中的纠缠动力学特性,分析了经典驱动场频率、原子和经典场的耦合系数以及参数α对并发度和线性熵的影响。结果发现通过调控经典驱动场能够提高两原子之间和两原子与场之间的纠缠,实现两原子之间纠缠突然死亡现象的操控,理论上提供了一种调控纠缠的方式。  相似文献   

13.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况.结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态.  相似文献   

14.
张剑  邵彬  邹健 《中国物理 B》2009,18(4):1517-1527
In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.  相似文献   

15.
We investigate the entanglement dynamics of a quantum system consisting of two-level atoms interacting with vacuum or thermal fields with classical driving fields. We find that the entanglement of the system can be improved by adjusting the classical driving field. The influence of the classical field and the purity of the initial state on the entanglement sudden death is also studied. It is shown that the time of entanglement sudden death can be controlled by the classical driving fields. Particularly, the entanglement sudden death phenomenon will disappear if the classical driving fields are strong enough.  相似文献   

16.
Zheng-Yin Zhao 《中国物理 B》2021,30(8):88501-088501
Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.  相似文献   

17.
Considering the intrinsic decoherence proposed by Milburn, we investigate the entanglement between two two-level atoms induced by a Fock state of single-mode quantized radiation field. The time-dependent reduced density matrix of the atoms system is given explicitly. Due to the intrinsic decoherence, the atoms system will approach a stationary state, where the stationary entanglement depends on the initial states of the field and the atoms.  相似文献   

18.
利用双光子过程耦合腔系统实现量子信息转移   总被引:2,自引:1,他引:1  
卢道明 《光学学报》2012,32(6):627001-231
给出了利用两个二能级原子和耦合腔双光子过程相互作用系统实现量子信息转移的方案。该方案中二能级原子通过双光子跃迁与单模腔场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子信息从一个原子转移到另一个原子。  相似文献   

19.
The goal of this work is to investigate quantum entanglement and quantum discord of a pair of two-level atoms which is driven by an external classical field and interacts with a cavity field. After extracting density matrix of the atom-atom subsystem, it is shown that we have stronger quantum discord by increasing atom-field coupling constant for the case in which there is no entanglement. Moreover, for the atom-atom subsystem it is realized that quantum entanglement and quantum discord cannot increase, they decrease after passing some times due to cavity dissipation. Also quantum entanglement and quantum discord decrease faster by increasing atom-field coupling constant.  相似文献   

20.
In this paper we investigate some aspects of the dynamics and entanglement of bipartite quantum system (atom-quantized field), coupled to a third “external” subsystem (quantized field). We make use of the Raman coupled model; a three-level atom in a lambda configuration interacting with two modes of the quantized cavity field. We consider the far off resonance limit, which allows the derivation of an effective Hamiltonian of a two-level atom coupled to the fields. We also make a comparison with the situation in which one of the modes is treated classically rather than prepared in a quantum field (coherent state).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号