首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 234 毫秒

1.  上浮气泡在壁面处的弹跳特性研究  
   李帅  张阿漫《物理学报》,2014年第63卷第5期
   本文针对毫米量级的上浮气泡在壁面处的弹跳现象进行数值研究. 基于势流方法求解气泡的运动,同时考虑气泡的表面张力作用. 在伯努利方程中,对气泡与壁面之间水膜中因黏性引起的压力梯度进行修正,开发相应的计算程序,计算值与实验值符合良好. 从气泡弹跳的基本现象入手,研究了特征参数对气泡弹跳过程的动态特性以及最终平衡形态的影响. 发现随着泡在撞击壁面之前上浮距离增大,气泡回弹距离和弹跳周期增加,但是当上浮距离增加到一定程度后将不会影响气泡的弹跳特性;表面张力是影响气泡弹跳特性的重要因素,气泡的弹跳周期随其增大逐渐减小,但回弹距离却呈现先增后减的规律;最后,影响气泡最终平衡形态的主要因素是气泡的浮力参数与韦伯数. 关键词: 气泡 壁面 弹跳 边界积分法    

2.  基于边界元法的近平板圆孔气泡动力学行为研究  
   刘云龙  张阿漫  王诗平  田昭丽《物理学报》,2013年第62卷第14期
   研究了带有圆孔的平板附近气泡动力学特性. 基于不可压缩势流理论, 建立了平板圆形破口附近气泡运动数值模型, 并针对气泡初始位置距离破口很近而导致计算结果发散的数值缺陷, 采用气泡壁和壁面融合的方法, 将流场分离为两个半无限域问题进行求解, 实现了在不同无量纲参数范围内的数值模拟, 数值结果与实验结果符合良好. 通过对圆孔附近气泡运动特性的研究发现, 圆孔对气泡的影响基本与壁面相反, 在膨胀阶段对气泡产生腔吸作用, 收缩阶段产生排斥, 在特定的工况下会产生对射流现象. 最后分析了气泡壁与壁面融合, 流场分离后的气泡动态特性以及各工况参数对其影响规律. 关键词: 气泡 边界元 射流 圆孔    

3.  气泡在自由液面破碎后的射流断裂现象研究  被引次数:1
   倪宝玉  李帅  张阿漫《物理学报》,2013年第62卷第12期
   在势流假设下, 考虑表面张力以及黏性修正, 建立自由液面在气泡破碎后全非线性运动的数值模型, 给出射流断裂和水滴撕裂的数值处理方法. 同时进行上浮气泡在自由液面破裂的实验研究, 数值解与实验值符合良好.为了研究自由液面在气泡破碎后的运动学机理和规律, 运用开发的程序研究了不同尺寸气泡破碎后的动态特性, 包括从气泡底部顶起的射流、射流断裂以及水滴分裂等复杂的物理现象, 总结了从射流上撕裂出的第一个水滴尺寸、撕裂时间以及最大射流速度的变化规律. 最后讨论了雷诺数与韦伯数对气泡破碎后自由液面运动的影响. 关键词: 气泡 自由液面 破碎 断裂    

4.  流体黏性及表面张力对气泡运动特性的影响  
   艾旭鹏  倪宝玉《物理学报》,2017年第66卷第23期
   基于气泡边界层理论,引入黏性修正,采用边界积分法,考虑黏性效应和表面张力在单气泡以及双气泡耦合作用过程中的影响.首先将建立的数值模型与Rayleigh-Plesset的解析解进行对比,发现二者符合良好,验证了数值模型的有效性;在此基础上,建立考虑流体弱黏性效应的双气泡耦合模型,研究流体黏性和表面张力作用下,气泡表面变形、射流速度、流场能量转换等物理量的变化规律;最后研究雷诺数和韦伯数对于气泡脉动特性的影响规律.结果表明,流体黏性会抑制气泡脉动和气泡射流发展,降低气泡半径和射流速度;表面张力不改变气泡脉动幅值,但缩短了脉动周期,提升气泡势能.    

5.  水下爆炸气泡融合动态特性研究  被引次数:1
   张阿漫  曾令玉  王诗平  杨树涛  姚熊亮  闻雪友《应用数学和力学》,2010年第31卷第2期
   在自然界中,气泡融合是一种重要的物理现象.基于势流理论,采用边界积分法,对水下爆炸气泡融合进行数值模拟研究.依据已有的数值研究成果和实验数据,建立气泡融合三维动力学数值模型,数值模拟结果与实验值吻合良好.应用该文开发的三维计算程序,分析距离、水深等特征参数对气泡融合动态特性的影响,得到了一些规律性的曲线和结论,旨在为水下爆炸气泡融合机理和动态特性研究提供理论参考.    

6.  自由上浮气泡运动特性的光滑粒子流体动力学模拟  
   孙鹏楠  李云波  明付仁《物理学报》,2015年第64卷第17期
   基于虚功原理, 在Hu X Y等和Grenier N等的研究结果基础上推导了多相流光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)控制方程, 采用精度较高的黏性力和表面张力模型, 发展了一套适用于具有大密度比和大黏性比界面的多相流SPH方法. 首先, 通过施加人工位移修正, 适当背景压力和异相界面力, 使得计算全程粒子分布相对均匀, 改善了界面处的失稳现象, 防止了异相界面处粒子的非物理性穿透; 在此基础上, 利用方形流体团振荡模型对表面张力模型进行了验证, 数值结果与解析解甚为吻合; 然后采用上浮气泡经典数值算例对比研究了不同黏性力计算方法、不同核函数的适用性以及人工位移修正的效果; 最后, 对单个气泡的上浮、变形、撕裂以及垂向两个气泡的追赶、融合等现象进行了模拟, 初步揭示了气泡上浮过程中各种有趣物理现象的细节过程和动力学机理.    

7.  基于势流理论的气枪气泡远场压力子波特性研究  
   叶亚龙  李艳青  张阿漫《物理学报》,2014年第63卷第5期
   气枪气泡的远场压力子波特性研究是研究气枪震源的基础,本文在前人研究基础上建立了三维边界元气泡动力学模型,并针对气泡射流这一技术瓶颈提出了能量等效算法. 再在上述模型中加入了简化的热力学模型,考虑了气枪释放气体以及气泡传热等热力学因素,将上面模型计算结果和Nucleus软件模拟结果对比,两者符合良好,并以此为基础探讨了传热系数、气枪发射时间、气体等体比热容对气枪主要参数的影响规律. 最后将轴对称气泡融合技术拓展到三维边界元模型,对相干枪进行初步研究,探讨了气枪间距对压力子波的影响规律,旨在为气枪的研究提供参考. 关键词: 气枪气泡 边界元 热力学 相干枪    

8.  气泡群的动态物理特性研究  
   张阿漫  姚熊亮  李佳《物理学报》,2008年第57卷第3期
   假设气泡周围流场为无黏、无旋、不可压缩的理想流体,建立气泡群相互作用的三维数值模型.将多极快速傅里叶变换方法(FFTM)与高阶边界元法(HOBEM)相结合求解气泡群的运动,在达到同样计算精度时显著加快了边界积分方程的求解速度,可以在合理的时间内模拟气泡群的动态物理特性.同时为维持气泡群模拟过程中的数值稳定性,引入了弹性网格技术(EMT),并用算例验证了数值模型及算法的有效性.基于建立的数值模型,研究了不同组合的气泡群之间的相互作用,模拟和解释了各类气泡运动的物理现象,讨论了影响气泡群膨胀、坍塌、迁移及射流 关键词: 气泡群 FFTM 射流 三维    

9.  表面活性剂浓度对球形气泡界面和尾流的影响  
   《工程热物理学报》,2020年第2期
   发展了一种研究气泡界面污染程度的数值模型,并用其对流场中不同表面活性剂浓度下、上浮气泡的界面参量和周围流场进行了模拟研究。该模型假设吸附于气泡界面的表面活性剂分布在毗邻气液界面的薄吸附层中,且气泡界面上表面活性剂的吸附与解吸过程也发生于此;界面切应力为界面浓度的函数。研究发现:气泡界面的流动性会因表面活性剂的吸附而降低,该现象会增大气泡周围流域中切向速度在界面法向上的变化量,从而对界面性质和周围流场产生影响;由于对流的作用和吸附-解吸动态平衡的存在,气泡前部界面不完全干净,且受污染界面的流动性也不完全为零。    

10.  气泡引起的皇冠型水冢实验与数值研究  被引次数:1
   李帅  张阿漫  王诗平《物理学报》,2013年第62卷第19期
   气泡在近自由液面运动过程中与自由液面发生强烈的耦合作用, 自由液面会出现极其复杂的物理现象, 形成的水冢类型繁多. 本文将针对皇冠型水冢, 基于势流理论, 建立气泡与自由液面耦合作用的数值模型, 并在气泡完成射流向下运动时, 忽略气泡对自由液面的影响, 继续模拟自由液面的运动过程. 同时利用高速摄影对近自由面的电火花气泡进行实验研究, 数值结果与实验符合良好, 相对误差在10%以内. 通过数值计算, 发现了围裙卷缩和主峰珠化等特殊的物理现象, 研究了气泡初始条件与韦伯数对皇冠型水冢动态特性的影响, 旨为皇冠型水冢的研究提供参考. 关键词: 气泡 自由液面 皇冠型水冢 韦伯数    

11.  非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究  
   霍新贺  王立锋  陶烨晟  李英骏《物理学报》,2013年第62卷第14期
   在随气泡顶端运动的坐标系中, 通过将理想流体模型推广到非理想流体的情况, 研究了流体黏性和表面张力对Rayleigh-Taylor (RT)和Richtmyer-Meshkov (RM)不稳定性气泡速度的影响. 首先得到了RT和RM不稳定性气泡运动的控制方程 (自洽的微分方程组); 其次给出了二维平面坐标和三维柱坐标中气泡速度的数值解和渐近解, 并定量分析了流体黏性和表面张力对RT和RM气泡速度和振幅的影响. 结果表明: 从线性阶段到非线性阶段的全过程中, 非理想流体中的气泡速度和振幅小于理想流体中的气泡速度和振幅. 也就是说, 流体黏性和表面张力对RT和RM不稳定性的发展都具有致稳作用. 关键词: Rayleigh-Taylor不稳定性 Richtmyer-Meshkov不稳定性 气泡速度 非理想流体    

12.  近壁面气泡的运动规律研究  被引次数:2
   张阿漫  姚熊亮《物理学报》,2008年第57卷第3期
   基于势流假设,建立气泡与壁面耦合数值模型,运用边界积分法求解,并开发三维计算程序,计算值与实验值符合很好.从气泡与壁面相互作用的基本现象入手,基于开发的程序系统地研究了刚性壁面附近气泡的动力学特性,其中包括水平壁面及倾斜壁面,研究壁面的Bjerknes效应与各特征参数之间的关系,并将各种工况的计算结果与基于Kelvin-impulse理论的Blake准则进行对比分析讨论,得出偏射流方向及壁面压力与气泡的特征参数有密切的关系,同时给出了Blake准则的适用范围.旨在为相关的近壁面气泡动态特性研究提供参考. 关键词: 气泡 壁面 边界积分 Bjerknes效应    

13.  气泡多周期运动时引起的流场压力与速度  
   李帅  张阿漫  韩蕊《力学学报》,2014年第4期
   假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩.基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法.通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证.利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动.环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大.环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.    

14.  NUMERICAL ANALYSIS ON THE VELOCITY AND PRESSURE FIELDS INDUCED BYMULTI-OSCILLATIONS OF AN UNDERWATER EXPLOSION BUBBLE  
   Li Shuai  Zhang Aman  Han Rui《力学学报》,2014年第46卷第4期
   假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.    

15.  一种基于黎曼解处理大密度比多相流SPH的改进算法  
   杨秋足  徐绯  王璐  杨扬《力学学报》,2019年第3期
   多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothed particle hydrodynamics, SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh–Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.    

16.  AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION1)  
   Qiuzu Yang  Fei Xu  Lu Wang  Yang Yang《力学学报》,2019年第51卷第3期
   多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.    

17.  自由场水中爆炸气泡的物理特性  
   张阿漫  姚熊亮  闻雪友《爆炸与冲击》,2008年第28卷第5期
   将水中爆炸气泡运动阶段周围流场假设为无粘、无旋、不可压缩的理想流体,运用边界元法模拟自由场中气泡的运动,在气泡运动模拟过程中引入数值光顺技术及弹性网格技术,避免因网格扭曲而导致的数值发散,并开发计算程序。计算值与实验值吻合良好,误差小于10%。从自由场水中爆炸气泡的基本现象入手,基于本文中开发的程序系统地研究了自由场中气泡的动力学特性。对流场中不同方位的压力进行分析,得出气泡中心的迁移方向及射流的攻击方向压力载荷比其他方向均大,说明气泡射流的攻击方向压力载荷最大,对水中结构造成严重毁伤,表明了气泡载荷的不对称性。计算了流场中不同位置的速度变化曲线,结果表明随着距气泡中心距离的增大,气泡运动引起的滞后流的速度迅速减小,且随着气泡的膨胀和坍塌,滞后流的方向逆转,总结了滞后流的衰减及变化规律。    

18.  静止水中单个上升气泡的直接数值模拟  被引次数:5
   陈斌  T.Kawamura  Y.Kodama《工程热物理学报》,2005年第26卷第6期
   本文发展了基于Front Tracking的直接数值模拟方法研究气液两相界面的迁移特性,该方法对气液两相采用半隐式的分步法直接求解N-S方程,耦合Front Tracking Method获得两相界面的三维变形。针对无边界以及垂直壁面附近静止水中的单个气泡上升过程进行模拟,研究气泡运动的机理以及气泡与壁面的相互作用。数值模拟准确再现了气泡的上升过程和变形,不同Re数下气泡的上升速度计算结果同经验关联式非常吻合,验证了该方法的有效性。随后分析了气泡周围流场的结构,发现壁面对气泡周围流场的抑制是壁面对气泡作用力的主要原因,将导致气泡逐渐偏离垂直壁面。    

19.  液体激光诱导转移的格子玻尔兹曼仿真研究  
   黄亚军  蔡文莱  陈英怀  黄志刚《光子学报》,2018年第8期
   采用介观尺度的格子玻尔兹曼方法,结合气-液两相流模型,对藻酸盐溶液的激光诱导液体转移进行了三维模拟.为获取气-液两相流模型的入口条件,引入Rayleigh-Plesset方程对等离子体气泡的演化进行计算.数值模拟结果与之前的实验结果吻合,反映了气泡形状变化和液体的向前向后转移现象.仿真研究表明液体的激光诱导转移机制主要与气泡动力学有关,气泡的快速膨胀将引发向前转移,而气泡的剧烈收缩是形成向后转移的主要原因.    

20.  小攻角下三维细长体定常空化形态研究  
   张忠宇  姚熊亮  张阿漫《物理学报》,2013年第62卷第20期
   基于边界元方法, 使空泡表面和细长体表面分别满足Dirichlet 边界条件和Neumann边界条件, 数值迭代获得小攻角下三维细长体的定常空化形态. 采用线性三角形单元, 将控制点布置在网格节点上, 应用局部正交坐标系并采用迭代方法获得空泡表面的速度势, 进而通过边界积分方程确定空泡厚度的分布. 采用拉格朗日插值方法得到空泡末端的厚度, 避免了迭代过程中网格的重新划分. 数值结果与实验值符合良好, 验证了该方法的合理性. 系统研究了空化数、攻角以及锥角对于三维细长体空化形态的影响规律. 数值结果表明: 攻角使得细长体的空化形态呈现不对称性, 出现空泡向背流面“堆积”的现象; 而空化数越小或锥角越大, 空泡形态的不对称性将越严重. 关键词: 边界元方法 三维细长体 局部空化 攻角    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号