首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
间隙高度对涡轮叶顶间隙流动的影响   总被引:6,自引:0,他引:6  
叶顶间隙流动是导致涡轮动叶中产生流动损失的主要原因之一.对某动力涡轮第一级内三维流动的数值计算结果表明,流体在经过动叶叶顶间隙以后在约25%叶顶轴向弦长处(τ=3mm)在叶顶与吸力边夹角处卷起形成间隙涡,造成流动阻塞,同时在间隙内叶片顶部10%叶顶轴向弦长处(τ=3mm)开始在压力边出现叶顶分离涡,使得间隙流动损失增加.随着间隙高度增大,通过间隙的流量增加,间隙涡形成位置后移,间隙涡、叶顶分离涡尺寸变大,在流道内影响范围增大,导致流动损失变大.  相似文献   

2.
间隙大小对高负荷压气机叶栅流动特性的影响   总被引:1,自引:0,他引:1  
在低速平面叶栅风洞中,对不同间隙大小条件下的高负荷压气机叶栅流动特性进行了实验研究。实验采用五孔气动探针测量了叶栅出口截面参数,得到了该截面的二次流速度矢量分布,并对叶栅下端壁和叶片表面进行了墨迹流动显示.结果表明,叶顶间隙的增加加剧了间隙泄漏流动与通道涡的相互作用和掺混,导致叶栅流道内的二次流结构和形态发生改变;增加叶顶间隙可完全抑制吸力面角区分离,但被间隙泄漏流动带走的低能流体被带到尾缘及其下游位置,加剧了相应位置的流动分离;间隙泄漏流动将引起叶栅总损失的显著下降,损失的大小并不一定与间隙大小成正比.  相似文献   

3.
对开式向心涡轮背部间隙流动特性进行计算分析,计算结果和实验符合较好。分析结果表明:背部间隙泄漏流量远小于叶顶间隙泄漏流量,但两者损失大小相当,可见背部间隙与叶顶间隙虽然在形式上相似,但流动特性及损失机理有所不同;背部机匣刮削效应增强了展向二次流强度,在吸力面附近出现较大的高熵区,同时背部间隙泄漏流在展向二次流的带动下源源不断向叶顶方向运动,与主流形成较强的掺混;相比之下,叶顶机匣刮削流和展向二次流相互抵消,叶顶间隙泄漏流被展向二次流限制在叶顶壁角附近,掺混损失相对较小。  相似文献   

4.
吸力面小翼对扩压叶栅间隙泄漏的影响   总被引:1,自引:0,他引:1  
采用数值模拟方法对利用吸力面小翼方式控制压气机叶栅间隙流动进行研究。结果表明,附加吸力面小翼可以降低叶顶泄漏流速,削弱泄漏涡强度,使得泄漏涡区损失降低。不同宽度吸力面小翼在不同间隙下部可以较好地减少叶尖泄漏,在叶顶间隙为3.3%叶高时,附加相对宽度为0.5的吸力面小翼可使损失降低4.7%。叶顶压差的降低及对泄漏涡结构的改变是吸力面小翼降低泄漏掺混损失的主要原因。  相似文献   

5.
《工程热物理学报》2021,42(9):2275-2283
动叶叶顶产生的间隙泄漏流对压气机的效率和稳定性产生明显影响。为了减小泄漏流对流道内部流场结构的影响,本文基于蜻蜓翅翼的翅室和褶皱结构,在跨声速压气机叶栅的机匣上布置仿生顶室结构。采用数值模拟方法,研究不同高度的仿生顶室结构对间隙泄漏量和流动损失的影响。结果表明:流体流经仿生顶室时,顶室内部存在明显的驻留涡,抑制泄漏涡沿节距方向的发展,减小间隙的泄漏流量和流动损失;在间隙高度为2 mm情况下,仿生顶室对泄漏量和流动损失的控制效果最为明显,最佳方案能够使总压损失系数下降1.2%,间隙泄漏量降低1%。  相似文献   

6.
借助实验校核CFD方法对具有叶顶间隙扩压叶栅进行了数值模拟,分别探究了叶顶开槽、吸力面端部开槽及叶顶-吸力面端部组合开槽进行附面层抽吸对其性能的影响,并从旋涡结构角度阐述其控制机理。结果表明,叶顶抽吸可以推迟泄漏涡的生成,有效抑制泄漏流的发展,降低其损失,端部抽吸则可以吸除角区低能流体团,减小端部损失,通过二者的组合,叶栅总压损失显著降低,气流折转能力加强。  相似文献   

7.
向心透平级内流动的数值研究   总被引:10,自引:0,他引:10  
本文基于三维N-S方程组,采用结构化网格,用数值方法模拟了一台75 kW微型燃气轮机中涡轮级内的流动。湍流模型采用Baldwin-Lomax模型,计算方法基于Jameson格式。结果表明:静叶流道在吸力面一侧,沿子午流线的前25%区域气流快速膨胀,而压力面在60%以后逐渐膨胀。一定的气流入口角能有效控制导叶内横向二次流动,并使得气流出口角更加均匀,其出口气流的落后角也有明显的减小。在叶轮流道内部的损失区主要集中在吸力面一侧,叶顶间隙的泄漏流动使得吸力面与叶顶间的角隅区的损失有明显加大,控制叶轮的径向间隙对控制流动损失有明显作用。  相似文献   

8.
利用等离子体非定常射流实现单转子轴流压气机扩稳   总被引:2,自引:0,他引:2  
实验研究了非定常等离子体射流对低速单转子轴流压气机稳定工作范围的影响。实验在低速单转子轴流压气机实验台上开展,在压气机转子前缘处布置一组等离子体激励器,通过施加非定常等离子体激励,在压气机转速为1500~2400r/min下实现了压气机扩稳。实验测量表明需要协调好激励器布置位置和激励强度之间的矛盾,将激励器靠近转子前缘对叶尖泄漏流的作用更强,不过距离转子过近会造成激励器与叶片之间易于爬电,这样无法提高激励强度,反而不利于扩稳,通过反复实验,发现在转子前缘19 mm布置激励器时不会发生爬电且扩稳效果比较理想。为了对等离子体诱导射流发生的反作用力有定量认识,利用电子天平测量了不同激励电压下反作用力的大小。  相似文献   

9.
涡轮叶尖泄漏流动对涡轮通道内流动损失有着显著影响,叶顶冷气射流对控制叶尖泄漏流动和改善涡轮叶尖气热性能有重要意义。本文利用数值模拟方法,研究了叶顶冷气喷射位置和喷射流量对高压涡轮凹槽叶顶间隙泄漏流动控制的影响。文中重点分析了泄漏流动结构及涡轮气动效率的变化,探讨了冷气对刮削涡这一间隙内主控流动结构演化的影响。研究表明,冷气孔位置的变化对间隙内刮削涡的演化造成了一定影响,但并未造成涡轮整体效率的较大变化;而冷气喷射流量不仅影响到刮削涡结构演化,而且导致了涡轮级效率近0.5%的变化。  相似文献   

10.
叶尖小翼对扩压叶栅气动特性影响的数值研究   总被引:5,自引:0,他引:5  
通过在叶片顶端加装小翼来降低叶顶二次流的叶尖小翼技术在叶轮机械领域受到关注。本文对具有不同叶尖小翼方案的压气机叶栅进行了全三维数值模拟,并详细分析了叶尖小翼对叶顶间隙流场的影响.结果表明,合理选择叶尖小翼的安装位置及自身宽度可以在一定程度上降低叶顶泄漏损失,在叶顶吸力面侧加装宽度为5 mm的小翼可以较好的削弱泄漏流动的强度,减少泄漏涡卷吸起更多的吸力面/端壁角区的低能流体及较早地阻止上通道涡的形成和发展。  相似文献   

11.
本文对前缘弯掠斜流转子叶顶间隙内的流动特性进行了数值分析。结果表明:叶顶间隙气流与主流发生卷吸而生成泄漏涡。泄漏涡作用的区域具有较低的压力分布。在叶片通道内,泄漏涡沿着与转子旋向相反的方向朝相邻叶片的压力面移动。大间隙时的泄漏涡比小间隙时强烈。低流量时泄漏涡的作用区域比高流量时大。在各种流量特性下,叶顶尾缘近吸力面区域都存在着二次间隙流。  相似文献   

12.
从端壁动态压力场看压气机转子尖区流动   总被引:8,自引:1,他引:7  
用高频压力传感器测量了低速单级压气机转子叶尖动态压力场。结果表明,转子叶背附面层径向潜流使得叶背附近存在一个高压带。叶背角区和叶盆角区的气流交混造成通道中部具有甚至不低于叶盆处的高压力。两个高压区都随流量的减小而扩大,并随流向逐渐融合,反映了叶背附面层径向潜流和中部气流交温的发展。设计状态下,泄漏涡是造成转子叶尖压力脉动的主要因素,形成的高水平压力脉动区随流向呈喇叭形逐渐扩大,约在一半弦长处脉动最强。近失速状态下,叶背前部角区中强叶面附面层潜流及与强泄漏流和端壁附面层的交混造成大范围的强压力脉动区,局部扩展到整个通道,通道中部叶背附面层很有可能发生分离。  相似文献   

13.
颤振是航空发动机、燃气轮机等运行安全的重要威胁,但颤振稳定性与流动结构之间的关系尚不清晰。本文使用行波法和影响系数法,对某宽弦复合掠型高速跨音风扇转子的一阶模态进行了颤振特性研究,计算了在100%转速下从堵塞点到近失速点的颤振表现。使用影响系数法时,分析了不同通道数的计算域对气动阻尼计算的影响,并与行波法得到的结果进行了对比。研究了流动结构与叶片表面气动阻尼之间的关系,旨在提高对流动致颤机理的认识。结果表明影响系数法和行波法均能对叶片的气动阻尼进行较好的预测;流动结构方面,激波、激波附面层分离、叶尖泄漏流以及吸力面前缘叶顶附近的非定常压力波动,对叶片的气动阻尼分布有较大的影响。  相似文献   

14.
近失速状态轴流压气机转子内尖区三维流动结构   总被引:1,自引:0,他引:1  
用激光测速系统测量了低速大尺寸单级压气机近失速状态转子内尖区三维流场。结果表明泄漏流在转子进口开始产生,泄漏涡约在10%弦长最强,并迅速向压力面和低叶高方向移动,沿程造成高紊流和高阻滞。叶尖吸力面附面层发生分离,迫使角区低能物质和旋涡在下游逐渐向通道中部移动,造成转子出口尖部通道中部大面积流动阻塞和紊流脉动。角区旋涡及泄漏涡影响区域紊流强度较高,其中径向分量最高,远大于轴向和切向分量。前缘马蹄涡压力面分支存在于转子进口叶尖压力面角区,并迅速向低叶高和通道中部移动,约在20%弦长和泄漏涡交汇。  相似文献   

15.
喷气对低速轴流压气机转子叶顶区域流动的影响   总被引:1,自引:0,他引:1  
本文采用数值模拟方法研究了近失速工况动叶顶部前缘附近喷气对低速轴流压气机孤立转子叶顶区域流动的影响.受喷射气流的影响,叶顶泄漏流进行自发非定常波动的动态平衡被破坏,建立起新的周期性非定常波动;喷气不仅改变了叶顶泄漏流的起始触发位置,还影响到其形成后的形态和运行轨迹;且喷气后叶顶附近区域损失减小.  相似文献   

16.
单转子压气机设计状态和近失速状态出口三维紊流流场   总被引:6,自引:0,他引:6  
用单斜丝详细测量了单转子压气机设计状态和近失速状态转子出口的三维素流流场。结果表明,设计状态叶尖泄漏涡和端壁附面层的掺混是造成尖部流动损失、气流阻塞和亲流脉动的主要原因。近失速状态流动三维性和非定常性较强;尖部吸力面角区轴向速度最低、相对动能损失最大;吸力面附面层径向潜移、叶尖吸力面角区低能团周向潜移及其输运的低能物质在尖部通道中部与叶尖泄漏流、泄漏涡、刮削涡发生掺混,造成尖部大范围的高损失区;根部和尖部吸力面阻面层局部发生分离。  相似文献   

17.
叶顶间隙泄漏流使得叶片顶部流动变得复杂,对间隙泄漏流的流动结构进行精细地捕捉并探讨其湍流特性有利于更深入的了解间隙泄漏流的流动机理,为控制泄漏损失提供依据。本文利用延迟脱体涡模拟方法对叶顶间隙泄漏流动进行非定常数值模拟;然后从叶顶间隙流的流动涡结构演变,湍动能和各向异性等方面研究叶顶间隙流的湍流特性;利用POD模态分解的方法对湍流特性做进一步分析,对分流场的基本规律、演变特点进行了详细研究;最后结合熵生成率,对泄漏流流动结构造成的损失进行了分析。研究发现,泄漏流在下游区存在着强湍流特性,涡尺度受不同的雷诺应力影响,且大尺度流动结构造成主要的耗散损失。  相似文献   

18.
对向心透平叶轮内部复杂流动在级环境下进行了全三维黏性数值模拟,结合拓扑学原理分析了设计工况和非设计工况下其内流动分离及各种涡系发展的演变过程,初步建立了向心透平叶轮内的旋涡模型,阐述了流动损失的形成机理。研究表明:向心透平叶轮内部涡系与轴流式透平存在较大差别,且流动分离及涡系主要集中在吸力面侧;设计工况下向心透平叶轮内的主要旋涡包括马蹄涡、通道涡及泄漏涡,其主要表现为通道涡与泄漏涡相互影响和掺混,是主要损失的形成原因;非设计工况下,主流在叶轮叶片前缘处发生大范围的分离及回流,造成了较大的能量损失,但二次流损失所占比例较小。  相似文献   

19.
Noise and performance tests were conducted on three low tip speed, half-stage, axial flow fans to determine the nature of the vortex shedding noise mechanism. Each fan was 356 mm in diameter and had eight equally spaced, variable pitch blades. The noise measurements were made in a free field environment and the fan back pressure and speed were varied during the tests. An acenaphthene coating on the blades was used to determine the regions of laminar and turbulent flow.Vortex shedding can be a significant source of noise when the fan is operated in a lightly loaded condition. Essentially it is due to instabilities in the laminar boundary layer on the suction side of the blade where these instabilities are in the form of Tollmien-Schlichting (T-S) waves. These instabilities interact with the trailing edge of the blade and generate acoustic waves which radiate from the trailing edge and form a feedback loop with the source of the instabilities. Vortex shedding noise can contribute as much as 5 dB in overall noise level and up to 22 dB at higher frequencies (8–14 kHz).Serrations located at the leading edge, at the mid-chord, or near the trailing edge on the suction side were found to reduce the vortex shedding noise significantly. The mid-chord location was found to be the most satisfactory because, as well as eliminating the noise, the serrations provided a 3% improvement in peak efficiency. This improvement occurred because separation of the laminar boundary layer was prevented on the suction side. On the other hand, serrations placed at the other two locations tended to degrade fan performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号