首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the analysis of a self-excited tower under turbulent wind flow is carried out. The structure is considered as a one dof nonlinear system, and the implications of this modeling are deeply discussed. The stationary wind is responsible for self-excitation, while the turbulent part provides both parametric and external excitations. The simultaneous presence of those excitations is taken into account in a specific resonance condition. The periodic and quasi-periodic solutions are studied by means of a perturbation method and the effects of the turbulence on the dynamics of the structure are analyzed.  相似文献   

2.
The study presents an analysis of two-point correlations between time series of nocturnal atmospheric wind, obtained from two micrometeorological towers, 45 m horizontally apart, each equipped with two sonic anemometers, 2.5 m vertically apart. It focuses on the scale dependence of the two-point correlations obtained from sensors vertically and horizontally separated. In particular, the role of low-frequency non-turbulent processes in the correlations is assessed, and compared to that of the turbulent scales of motion. The vertical correlations of the streamwise and vertical wind components show little dependence on the turbulence intensity, but those of the spanwise component decrease appreciably as it gets more turbulent. Multiresolution decomposition shows that the two-point correlations become increasingly dominated by low-frequency scales as it gets less turbulent, and that such large-scale processes are largely reduced in fully turbulent conditions. It is also shown that the vertical correlations of the spanwise wind component is negative for very small time scales. Horizontal two-point correlations obtained at the 45 m separation distance between the towers are almost entirely dominated by low-frequency motions, regardless of the turbulence intensity, but the magnitude of such correlations decreases with increasing turbulence intensity for any wind components. A comparison between the horizontal two-point correlations and autocorrelations taken with a time lag given by the ratio of the horizontal separation to the mean wind component in the direction that connects the two towers leads to the conclusion that the statistical properties of turbulence are often preserved over the horizontal distance, despite the lack of turbulence correlations for that separation.  相似文献   

3.
The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two “rotor” wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.  相似文献   

4.
The variational principle of maximum entropy is used to describe the dynamics of weakly nonequilibrium turbulence using the theory of Reynolds stresses for viscous incompressible liquid flow. From this principle, equations closing the theory of Reynolds stresses and also equations describing mean flow-turbulence interaction for 3D turbulent flows are derived. The theory is reduced to 2D flows and weak turbulence. Thermodynamic analogues and an example of Couette flow are considered.  相似文献   

5.
R.P. Sharma 《Physics letters. A》2010,374(34):3491-3498
This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfvén wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfvén wave and the turbulent spectra are presented in intermediate-β plasmas at heliocentric distances (0.3 AU?r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law kS, 5/3?S?3) can be responsible for plasma heating and particle acceleration in solar wind.  相似文献   

6.
Within the framework of the fully nonlinear water waves equations, we consider a Stokes wavetrain modulated by the Benjamin-Feir instability in the presence of both viscous dissipation and forcing due to wind. The wind model corresponds to the Miles’ theory. By introducing wind effect on the waves, the present paper extends the previous works of [6] and [7] who neglected wind input. It is also a continuation of the study developed by [9] who considered a similar problem within the framework of the NLS equation. The marginal stability curve derived from the fully nonlinear numerical simulations coincides with the curve obtained by [9] from a linear stability analysis. Furthermore, it is found that wind input goes in the subharmonic mode of the modulation whereas dissipation damps the fundamental mode of the initial Stokes wavetrain.  相似文献   

7.
8.
Summary The anemometric measurements recorded for more than one year on two 232 m high towers supporting the power lines crossing the Strait of Messina are analysed. The results indicate several meteo-climatic characteristics of considerable interest to the construction of the bridge over the Strait. It is apparent that: 1) the surrounding orography, although several km from the points of measurement, located on the north side of the Strait, plays the main role in determining wind distribution, from ground level up to a height of several hundred metres. In practice the wind blows from four directions 30 degrees each. 2) Two of these (210 and 330 degrees) display velocity distributions of specific interest for the construction of the bridge. 3) The wind blowing up the Strait (210 degrees) is the strongest in all seasons; it has a logarithmic vertical profile, low turbulence and for the same altitude maintains a constant ratio between vertical velocity (always ascending) and horizontal velocity. 4) The NW wind is more turbulent, has a nonlogarithmic profile and also has a constant ratio between horizontal and vertical velocity.  相似文献   

9.
We present new results for the time reversal of weakly nonlinear pulses traveling in a random dissipative environment. Also we describe a new theory for calculating the eddy viscosity for weakly nonlinear waves propagating over a random surface. The turbulent viscosity is calculated from first principles, namely, without imposing any stress-strain hypothesis. A viscous shallow water model is considered and its effective viscosity characterized. We also show that weakly nonlinear waves can still be time reversed under weak dissipation. Incoherently scattered signals are recompressed, both for time reversal in transmission as well as in reflection. Under the weakly nonlinear, weakly dissipative regime, dissipation only affects the refocused pulse profile regarding its amplitude, but its shape is not corrupted. Numerical experiments are presented.  相似文献   

10.
A new method to derive the nonlinear equations linearized using the substitutions extending the Cole-Hopf substitution to the Burgers equation is considered. A method to analyze the general structure of the solutions and to calculate the exact solutions in the problems of one-dimensional compressible fluid flows is developed on the basis of this approach. The cases of the ideal and viscous fluids are considered. The problem of the dynamics of dust-like matter at a zero pressure and the gas-dust mixture is analyzed.  相似文献   

11.
The paper addresses nonlinear phenomena that control the interaction between plasma flow (solar wind) and magnetic barrier (magnetosphere). For the first time we demonstrate that the dominant solar wind kinetic energy: (i) excites boundary resonances and their harmonics which modulate plasma jets under the bow shock; (ii) produces discrete three-wave cascades, which could merge into a turbulent-like one; (iii) jet produced cascades provide the effective anomalous plasma transport inside and out of the magnetosphere; (iv) intermittency and multifractality characteristics for the statistic properties of jets result in a super-ballistic turbulent transport regime. Our results could be considered as suggestive for the space weather predictions, for turbulent cascades in different media and for the laboratory plasma confinement (e.g., for fusion devices).  相似文献   

12.
A generator of turbulent electron beams in an independent mode and in the mode of amplification of an external single-frequency signal is experimentally investigated. The formation of higher harmonic components in the spectrum of output radiation of the generator is shown experimentally. The phenomenological model of the turbulent electron flow is constructed on the basis of a chain of interacting “electron vortices” described by the modified nonlinear Van-der-Pol differential equations. The modes of independent dynamics and the mode of amplification of an external harmonic signal are considered. The results of numerical modeling and experimental investigations are compared. The qualitative correspondence of the behavior of the dependences obtained from the experimental investigation of the generator of turbulent electron beams and the results obtained from numerical modeling is shown.  相似文献   

13.
14.
Banakh VA  Marakasov DA 《Optics letters》2007,32(15):2236-2238
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.  相似文献   

15.
We develop a model of transformation of the short surface wave spectrum in the presence of a nonuniform flow on a water surface, in which the modulation of wind-wave growth rate is taken into account. The model of a turbulent near-water atmospheric layer is used to calculate the modulated growth rate. In this model, turbulent stresses in the wind are described using a gradient approximation with model eddy viscosity specified with allowance for the known laboratory experiments. The examples of short-wave modulation in the presence of nonuniform flows on a water surface, originating from ripples and intense internal waves, are considered. It is shown that deformations of the wind-velocity profile and its long-wavelength perturbation due to the nonlinear interaction between the wind surface waves and the wind has a significant effects on the short-wave growth rate and its modulation. In the case of ripples, this deformation reduces to an increase in the roughness parameter of the wind-velocity profile and to a velocity-profile modulation with ripple period. The modulated growth rate is calculated within the framework of a quasi-linear model of surface-wave generation by a turbulent wind, in which the hypothesis of random phases of the wind-wave field is used. The amplitude and phase of the hydrodynamical modulation transfer function are calculated within the framework of the relaxation model. The calculation results are in reasonable agreement with the available experimental data. A model described by the combined Korteweg–de Vries equation is used to study a surface flow field generated by intense internal waves. The internal-wave parameters are takes from the results of the COPE experiment. We calculate the wind growth-rate dependences on the wave-train phase for the cases of downwind and upwind propagation of an internal wave. The calculation results agree qualitatively with experimental data.  相似文献   

16.
Lagrangian dynamics and statistical geometric structure of turbulence   总被引:1,自引:0,他引:1  
The local statistical and geometric structure of three-dimensional turbulent flow can be described by the properties of the velocity gradient tensor. A stochastic model is developed for the Lagrangian time evolution of this tensor, in which the exact nonlinear self-stretching term accounts for the development of well-known non-Gaussian statistics and geometric alignment trends. The nonlocal pressure and viscous effects are accounted for by a closure that models the material deformation history of fluid elements. The resulting stochastic system reproduces many statistical and geometric trends observed in numerical and experimental 3D turbulent flows, including anomalous relative scaling.  相似文献   

17.
In this paper strong evidence is provided for significant far from equilibrium phase transition processes in the Earth’s magnetosphere as revealed by the nonlinear analysis of in situ observations. These results constitute the solid base for the solution of the durable controversy about the chaotic or non-chaotic character of the magnetospheric dynamics. During the last two decades the concept of low dimensional chaos was supported by theoretical and experimental methods by our group in Thrace and others scientists, as an explicative paradigm of the magnetospheric dynamics including substorm processes. In parallel, the concept of self-organized criticality (SOC) and space-time intermittency was introduced as new and opposing to low dimensional chaos concepts for modeling the magnetospheric dynamics. Novel results concerning the nonlinear analysis of in situ space plasma data (magnetic-electric field, energetic particles and bulk plasma flow time series) obtained by the Geotail spacecraft presented in this paper for the first time reveal the following: (a) Coexistence of SOC and chaos states in the magnetospheric system and global phase transition from one state to the other during substorms. (b) Strong intermittent turbulent character of the magnetospheric system at the SOC or the low dimensional chaos states. (c) Clear indications for non-extensivity and q-Gaussian statistics during periods of low dimensional and chaotic dynamics of the magnetosphere. (d) Low dimensional and nonlinear space plasma dynamics in the day side magnetopause and bow shock dynamics. The dual character of the magnetospheric dynamics including low dimensional chaotic (coherent) and high dimensional turbulent states, as supported in this paper, is in agreement and verifies previous theoretical and experimental studies.  相似文献   

18.
We extend the direct numerical simulation (DNS) capability developed in [D. Yang, L. Shen, Simulation of viscous flows with undulatory boundaries: Part I. Basic solver, J. Comput. Phys. (submitted for publication) ] to the simulation of two-fluid interaction with deformable interface. Two approaches are used to couple the DNS of one fluid with the simulation of another fluid. In the first, the DNS is coupled with a potential-flow based wave solver that uses a high-order spectral (HOS) method. This coupled method is applied to simulate the interaction of turbulent wind with surface waves, including single wave train and broadband wavefield. Validation with previous theoretical and experimental studies shows the accuracy and efficiency of this coupled DNS-HOS method for capturing the essential physics of wind–wave interaction. In the second approach, both of the fluids are simulated by the DNS and are coupled by an efficient iterative scheme, in which the continuity of velocity and the balance of stress are enforced at the interface. The performance of this coupled DNS–DNS method is demonstrated and validated by several test cases including: interfacial wave between two viscous fluids, water surface wave over highly viscous mud flow with interfacial wave, and interaction of two-phase vortex pairs with a deformable interface. Comparison with existing theoretical and numerical results confirms the accuracy of this coupled DNS–DNS method. Finally, this method is applied to study the interaction of air and water turbulence. The nonlinear development of interfacial wave by the excitation of the air and water turbulence, and the wave effect on the instantaneous and statistical characteristics of the turbulence are elucidated.  相似文献   

19.
The object of consideration is the turbulent flows of a viscous incompressible liquid that arises in a wide spherical layer with counter-rotating boundaries (the thickness of the layer equals the radius of the inner sphere). Regimes established when the outer sphere rotates with a constant velocity and the inner one rotates with an increasing velocity are studied in physical and numerical experiments. The averaged meridional circulation and the pulsation profiles of all velocity components are derived by direct calculation. It is found that both observed and simulated turbulent regimes are characterized by the continuous spectrum of velocity pulsation near their formation boundary. In going from the laminar to chaotic regime, the correlation dimension increases stepwise and then slightly varies with increasing Reynolds number in a nonlinear manner.  相似文献   

20.
We show that the formation of a vortex lattice in a weakly interacting Bose condensed gas can be modeled with the nonlinear Schr?dinger equation for both T=0 and finite temperatures without the need for an explicit damping term. Applying a weak rotating anisotropic harmonic potential, we find numerically that the turbulent dynamics of the field produces an effective dissipation of the vortex motion and leads to the formation of a lattice. For T=0, this turbulent dynamics is triggered by a rotational dynamic instability of the condensate. For finite temperatures, noise is present at the start of the simulation and allows the formation of a vortex lattice at a lower rotation frequency, the Landau frequency. These two regimes have different vortex dynamics. We show that the multimode interpretation of the classical field is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号