首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Molecular (or granular) dynamics methods are used to study the gravity-driven flow of granular material through a horizontal aperture in three dimensions. The grains are spherical and modeled using a short-range repulsive interaction, together with normal and tangential frictional damping forces. The material is contained in a rough-walled cylindrical container with a circular hole in its base, and to permit flow measurements under steady-state conditions a continuous feed approach is employed in which exiting grains are replaced at the upper surface of the material. The dependence of flow velocity and discharge rate on aperture diameter is found to agree with experiment; other quantities such as the kinetic energy and pressure distributions are also examined. Received 5 June 2000 and Received in final form 21 September 2000  相似文献   

2.
Experimental investigations on the shape of a heap formed in a Hele Shaw cell either on a flat base or in a two-dimensional silo are presented. We have focused our attention on the shape dependence on mass flux and initial energy of particles poured into the cell. Two kinds of granular media are considered: glass beads and sand and we shall point out their different behaviors. We described the variations of the angle of repose and of the size of the tail as a function of the experimental parameters. We also report the time evolution of the angle of repose during the formation of the heap. Received 28 September 1998 and Received in final form 20 January 1999  相似文献   

3.
The connection between granular gases and sticky gases has recently been considered, leading to the conjecture that inelastic collapse is avoided for space dimensions higher than 4. We report Molecular Dynamics simulations of hard inelastic spheres in dimensions 4, 5 and 6. The evolution of the granular medium is monitored throughout the cooling process. The behaviour is found to be very similar to that of a two-dimensional system, with a shearing-like instability of the velocity field and inelastic collapse when collisions are inelastic enough, showing that the connection with sticky gases needs to be revised. Received 17 April 2000 and Received in final form 7 June 2000  相似文献   

4.
In the present paper we consider the case of an electron under the presence of a single mode field in a cavity linearly polarized in the z-direction. We adopt the dipole approximation and we derive the full propagator of the electron. In the present case we suppose that the field is in a coherent state. The parameters of the propagator involve Mathieu functions. Finally we extract the time evolution of an initially Gaussian wavepacket and its probability density. The present theory is applicable to the interaction of strong fields with atoms. Received 17 March 2000 and Received in final form 19 December 2000  相似文献   

5.
The theory of parametric down conversion within the framework of the Wigner representation has been treated recently in a series of papers using the standard model Hamiltonian. Here we take a more fundamental point of view studying the mechanism, inside the crystal, for the production of the signal and idler beams. We begin from the evolution equations for the quantum field operators, pass to the Wigner function and solve the resulting (Maxwell) equations with the use of the Green's function method. We derive the time dependence of the coincidence detection probability as a function of the parameters of the nonlinear crystal (in particular the length) the radius of the pumping beam, and the bandwidth of the filters in front of the detectors. Received 24 January 2000 and Received in final form 24 March 2000  相似文献   

6.
The size evolution of the surface plasmon resonance was investigated for free and embedded silver particles between about 2 to 10 nm in size. The crystal lattice of such particles as analyzed by high resolution electron microscopy show linear contraction with reciprocal particle size. Based on this, a model was presented by combining the lattice contraction of particles and the free path effect of electrons to predict the size evolution of the resonance. The results reveal a contribution of the lattice contraction to the resonance shift according to a roughly linear relation that changes slightly with particle radius (> 1.0 nm) and surrounding media. This surface plasmon resonance shift proceeds linearly with reciprocal size for Ag particles in vacuum and argon, but for Ag particles embedded in glass it appears to be independent of the radius down to nearly 1 nm. All predictions are quantitatively compared to previously reported experimental data and a good agreement is obtained. An unusual red-shift observed for Ag particles in glass may be attributed to a thermal expansion mismatch induced lattice dilatation. Received 26 July 2000 and Received in final form 14 September 2000  相似文献   

7.
Femtosecond excitation and relaxation of nonequilibrium electrons are investigated in silver clusters using a two color pump-probe technique with resonant excitation of the surface plasmon resonance and off resonant probing. The excitation process is shown to be identical to that in metal films, and permits creation of a strongly athermal single electron excitation in a time scale shorter than the duration of the pulses (25-30 fs), in agreement with the free-electron absorption model. Following the time evolution of the nonequilibrium distribution yields information on the internal energy redistribution dynamics of the conduction electrons and of its modification by confinement in metal clusters. Received 1st December 2000  相似文献   

8.
We have experimentally studied the coaxial settling of three identical non-Brownian spheres in a shear-thinning fluid at small Reynolds numbers. While settling, the particles create corridors of reduced viscosity in their wake and, if they are initially close enough to one another, they can form stable clusters. By analogy with previous results obtained on two-particle interaction in the first part of this work, we show that the particle velocities can be satisfactorily described using a first-order expression and assuming that the reduced viscosity remains constant. We report systematic experiments performed at different initial separation distances between particles and the use of our simple model allows the prediction of the settling behaviour and in particular the conditions for clusters formation. We thus show that particle aggregation can occur even for large initial distances between particles and within times that are small compared to the time scales in Newtonian fluids. Received 10 July 2002 RID="a" ID="a"e-mail: talini@fast.u-psud.fr  相似文献   

9.
We present a framework that allows for a systematic assessment of risk given a specific model and belief on the market. Within this framework the time evolution of risk is modeled in a twofold way. On the one hand, risk is modeled by the time discrete and nonlinear garch(1,1) process, which allows for a (time-)local understanding of its level, together with a short term forecast. On the other hand, via a diffusion approximation, the time evolution of the probability density of risk is modeled by a Fokker-Planck equation. Then, as a final step, using Bayes theorem, beliefs are conditioned on the stationary probability density function as obtained from the Fokker-Planck equation. We believe this to be a highly rigorous framework to integrate subjective judgments of future market behavior and underlying models. In order to demonstrate the approach, we apply it to risk assessment of empirical interest rate scenario methodologies, i.e. the application of Principal Component Analysis to the the dynamics of bonds. Received 1st August 2000  相似文献   

10.
Conservation equations are written for surface flows (either fluid or granular). The particularity of granular surface flows is then pointed out, namely that the depth of the flowing layer is not a priori fixed, leading to open equations. It is shown how some hypothesis on the flowing layer allows to close the system of equations. A possible hypothesis, similar to that made for a fluid layer, but inspired from granular flow experiments, is presented. The force acting on the flowing layer is discussed. Averaging over the flowing depth, as in shallow water theory, then allows to transform these conservation laws into equations for the evolution of the profile of a granular pile. Apart from their interest for building models, these conservation laws can be used to measure experimentally the effective forces acting on a flowing layer. Received 25 July 1998 and Received in final form 14 January 1999  相似文献   

11.
Compaction of a granular material under cyclic shear   总被引:1,自引:0,他引:1  
In this paper we present experimental results concerning the compaction of a granular assembly of spheres under periodic shear deformation. The dynamics of the system is slow and continuous when the amplitude of the shear is constant, but exhibits rapid evolution of the volume fraction when a sudden change in shear amplitude is imposed. This rapid response is shown to be uncorrelated with the slow compaction process. Received 31 March 2000  相似文献   

12.
The evolution of a granular gas of viscoelastic particles in the homogeneous cooling state is studied. The velocity distribution function of granular particles and the time dependence of the mean kinetic energy of particles (granular temperature) are found. The noticeable deviation of the distribution function from the Maxwell distribution and its non-monotonous evolution are established. The perturbation theory with respect to the small dispersion parameter is elaborated and the analytical expressions for the asymptotic time dependence of the velocity distribution function and the granular gas temperature are derived.  相似文献   

13.
The laser driven dynamics of the OH(D) stretching vibration in phthalic acid monomethylester is investigated. The combination of a 55-dimensional all-Cartesian reaction surface Hamiltonian and the time-dependent self-consistent field approach is shown to provide a microscopic picture of intramolecular vibrational energy redistribution taking place upon interaction with an external laser field. Choosing suitable zeroth-order vibrational states and combinations thereof a quasi-periodic in-phase and out-of-phase oscillatory behavior is observed manifesting energy flow on different time scales. The fingerprints of this behavior in transient absorption spectroscopy are also discussed. Received 24 August 2000 and Received in final form 11 October 2000  相似文献   

14.
《Physica A》2006,360(1):143-150
The dynamic evolution of granular gases is fundamentally different from molecular gases due to the energy loss during collisions. Nevertheless techniques of kinetic theory are useful in a regime, when the granular particles are moving rapidly and the gas is sufficiently dilute. In these lecture notes we analyse in detail the collision of two rough particles which is inelastic due to incomplete normal and tangential restitution as well as Coulomb friction. Based on the Walton model a time evolution operator for the many particle system is introduced, a formalism which is well suited for simple approximations. We discuss free cooling of granular particles with particular emphasis on the exchange of energy between rotational and translational degrees of freedom.  相似文献   

15.
A new model of evolution is presented for finite size systems. Conditions under which a minority species can emerge, spread and stabilize to a macroscopic size are studied. It is found that space organization is instrumental in addition to a qualitative advantage. Some peculiar topologies ensure the overcome of the initial majority species. However the probability of such local clusters is very small and depend strongly on the system size. A probabilistic phase diagram is obtained for small sizes. It reduces to a trivial situation in the thermodynamic limit, thus indicating the importance of dealing with finite systems in evolution problems. Results are discussed with respect to both Darwin and punctuated equilibria theories. Received 25 June 2000  相似文献   

16.
We present one-dimensional molecular dynamics simulations of a two-species, initially uniform, freely evolving granular system. Colliding particles swap their relative position with a 50% probability allowing for the initial spatial ordering of the particles to evolve in time and frictional forces to operate. Unlike one-dimensional systems of identical particles, two-species one-dimensional systems of quasi-elastic particles are ergodic and the particles' velocity distributions tend to evolve towards Maxwell-Boltzmann distributions. Under such conditions, standard fluid equations with merely an additional sink term in the energy equation, reflecting the non-elasticity of the interparticle collisions, provide an excellent means to investigate the system's evolution. According to the predictions of fluid theory we find that the clustering instability is dominated by a non-propagating mode at a wavelength of the order 10πL/Nɛ , where N is the total number of particles, L the spatial extent of the system and ɛ the inelasticity coefficient. The typical fluid velocities at the time of inelastic collapse are seen to be supersonic, unless Nɛ ≲ 10π . Species segregation, driven by the frictional force occurs as a result of the strong temperature gradients within clusters which pushes the light particles towards the clusters' edges and the heavy particles towards the center. Segregation within clusters is complete at the time of inelastic collapse.  相似文献   

17.
A mean field approach is used to estimate the energy dissipation during the homogeneous sedimentation or the particulate fluidization of non Brownian hard spheres in a concentrated suspension of infinite extent. Depending on inertial screening and the range of the hydrodynamic interactions, the effective buoyancy force is determined either from the average suspension density in a Stokes flow or from the fluid density in the turbulent flow regime. An energy balance then yields a settling or fluidization law depending on the particle Reynolds number in reasonable agreement with the Richardson and Zaki correlation and recent experimental results for particle settling or fluidization. We further estimate the energy dissipation in the turbulent boundary layers around the particles to precise the Reynolds number dependence of the hindered settling function in the intermediate flow regime. Received 22 February 1999 and Received in final form 14 June 1999  相似文献   

18.
Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.  相似文献   

19.
The onset of surface fluidization of granular material in a vertically vibrated container, z = A cosωt , is studied experimentally. Recently, for a column of spheres it has been theoretically found (see T. P?schel, T. Schwager, C. Salue na, Phys. Rev. E 62, 1361 (2000)) that the particles lose contact if a certain condition for the acceleration amplitude ≡Aω2/g = f (ω) holds. This result is in disagreement with other findings where the criterion = = const was found to be the criterion of fluidization. We show that for a column of spheres a critical acceleration is not a proper criterion for fluidization and compare the results with theory. Received 21 August 2000 and Received in final form 30 October 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号