首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The LiFe0.9Mg0.1PO4/C powder of pure olivine phase can be prepared with the duplex process of spray pyrolysis synthesis (at 450 °C) and subsequent heat treatment (at 700 °C for 2, 4 and 8 h). From scanning electron microscopy observation with corresponding elemental mapping images of iron, phosphorous and magnesium, it could be found that the LiFe0.9Mg0.1PO4 powders are covered with fine pyrolyzed carbon. Raman spectra indicate that the phase of carbon with higher electronic conductive phase is predominant when prolonged subsequent heat treatment is carried out. The carbon coatings on the LiFe0.9Mg0.1PO4 surface can improve the conductivity of the LiFe0.9Mg0.1PO4 powder (3.8×10−5 S cm−1) to about a factor of ∼104 higher than the conductivity of LiFePO4. The stability and cycle life of a charge/discharge cycle test of lithium ion secondary batteries are also enhanced. The results indicate that the LiFe0.9Mg0.1PO4 powder, prepared at a pyrolysis temperature of 450 °C and with post-heat-treatment at 700 °C for 8 h, exhibits a specific initial discharge capacity of about 132 mA h g−1 at C/10 rate, 105 mA h g−1 at 1C, and 87 mA h g−1 at 5C.  相似文献   

2.
林志萍  赵彦明  赵宇军 《中国物理 B》2011,20(1):18201-018201
This paper investigates Mn-doped LiCoPO4 material using first-principles calculations. Results indicate that the volume change of LiMnxCo1-xPO4 to MnxCo1-xPO4 is smaller than that of undoped LiCoPO4, which is responsible for the excellent tolerance of repeated cycling in lithium ion batteries. Combining first-principles calculations with basic thermodynamics, we calculate the average intercalation voltage of Mn-doped LiCoPO4. It is shown that the redox couple Mn3+/Mn2+ can be observed with increasing Mn content. Therefore, the Mn ion displays some electrochemical activity during discharge/charge of LiMnxCo1-xPO4 due to the coexistence of Co and Mn.  相似文献   

3.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

4.
《Solid State Ionics》2006,177(26-32):2667-2674
We prepared transition metal containing titanium phosphates obtained from mesoporous titanium phosphate treated with cobalt and copper acetates and subsequently heated at 573 K under either air or nitrogen atmospheres. The first treatment with acetates incorporates the metal and acetate ions in the system. Moreover, it partially extracts the director agent. Total extraction of the surfactant can be reached in the copper samples after heating twice. However, the surfactant is not removed from the cobalt samples under the thermal conditions therein used. The composition of the heated materials is close to NASICON structures with a formula close to M1.5Ti1.5(PO4)3 (M = Co,Cu). A certain content in elemental carbon is observed in the samples obtained under nitrogen atmosphere, which are also more conductive than those prepared under air. The first discharge of lithium cells based in these mesoporous materials show electrochemical activity of Ti4+/Ti3+, Co2+/Co0 and Cu2+/Cu0 couples in the OCV–1.0 V region. Below this voltage, the discharge profiles are typical of phosphate systems where Li3PO4 is a product of the electrochemical reaction with lithium and, moreover, electrolyte solvent is reduced. Electrolyte is more degraded when the samples contain carbon. Capacities as high as 1600 mA h g 1 can be obtained at deep discharge. However, there is an irreversible capacity loss in the four systems due to the occurrence of insulating products as Li3PO4 and a solid electrolyte interface.  相似文献   

5.
Lithium-rich layered oxide Li1.2Ni0.16Co0.08Mn0.56O2 can be referred as a crystalline mixture of Li2MnO3 and LiNi0.4Co0.2Mn0.4O2 at equal molar ratio. In the paper, the solid state reaction of M(AC)2·4H2O (M = Mn, Co and Ni) and LiOH·H2O has been performed to obtain nanocrystalline Li1.2Ni0.16Co0.08Mn0.56O2 using a small molecular organic acid (i.e., oxalic acid (OA), citric acid (CA) or tartaric acid (TA)) as additive. The introduction of organic acids can help to improve the layered structure and inhibit the particle growth of Li1.2Ni0.16Co0.08Mn0.56O2, and the different organic acids exert distinct influences on the structural and electrochemical properties of Li1.2Ni0.16Co0.08Mn0.56O2. In detail, the nanoparticles obtained in the presence of OA have the smallest average size of 50–150 nm, which correspondingly exhibit the highest initial discharge capacity of 267.52 mAh g−1 at 0.1C and the best high-rate capability (e.g., 152.22 mAh g−1, 5C) when applied as a lithium ion battery cathode. Furthermore, the active substance obtained from TA shows the best cycling stability and a discharge capacity of 202.42 mAh g−1 can be retained after 50 cycles at 0.5C.  相似文献   

6.
《Solid State Ionics》2006,177(26-32):2617-2624
The paper presents the investigations on the structural, electrical and electrochemical properties of Mn substituted phospho-olivines LiFe1  yMnyPO4 and of W, Ti or Al doped LiFePO4. The microscopic nature of the observed macroscopic, metallic-like conductivity of W, Ti, Al doped phospho-olivine samples is discussed. Some fundamental arguments against the bulk type conductivity are presented.A single phase, diffusional mechanism of deintercalation was found to appear for Mn-substituted LiFe1  yMnyPO4 samples in the whole range of lithium concentration, in contrast to the pure LiFePO4, LiMnPO4 and W, Ti, Al doped phospho-olivines, where a two-phase mechanism of electrochemical lithium extraction/insertion is observed.  相似文献   

7.
Li2CO3 was used as the secondary lithium source for the synthesis of LiFePO4/C composites via a solid-state reaction method by adopting Li3PO4 as the main lithium source. The main purpose of using Li2CO3 is to compensate for the partial lithium loss during the sintering while reducing the usage of excess Li3PO4. In this study, the effects of Li2CO3 amount on the phase, structural and electrochemical properties of LiFePO4/C material were systematically investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), constant-current charge–discharge test and cyclic voltammetry (CV). The results showed that by adding an appropriate amount of Li2CO3, the impurities, e.g. Li3PO4, normally appearing in the final product, could be excluded. It was found that LiFePO4/C with Li2CO3 in 6% excess (vs. stoichiometric LiFePO4) exhibited the best electrochemical performance, which delivered initial discharge capacities of 141.7, 125.2, 119.9 and 108.9 mAh g?1, respectively, at 0.5, 1, 2 and 5C rates. The capacity was reduced to 113.4 mAh g?1 after 50 cycles at 2C rate, with capacity retention rate of 94.6%.  相似文献   

8.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

9.
Li4(Sr0.96Eu0.04)(Ca1 − xMnx)(SiO4)2 phosphors were synthesized by solid-state reactions and photoluminescence (PL) properties were investigated. These phosphors have intense absorption in n-UV region, which is suitable for excitation of UV LEDs. The orange-reddish emission of Mn2+ can be adjusted by changing the Mn2+/Eu2+ ratio. Energy transfer from Eu2+ to Mn2+ is observed. Li4(Sr0.96Eu0.04)(Ca1 − xMnx)(SiO4)2 phosphors could be used in white LEDs.  相似文献   

10.
The electrochemical characteristics of the sulfur composite cathode for reversible lithium storage were investigated. The sulfur composites showed novel electrochemical characteristics as well as high specific capacity and good cycleability. The sulfur composite presented the average discharge voltage of 1.9 V, which was just the half of conventional LiCoO2 cathode materials, indicating that the double cells in series presented the same working voltage as conventional LiCoO2 cells and meaning that the sulfur composite cells will have good interchangeability with conventional LiCoO2 cells. The overcharge test showed that the sulfur composite cell cannot be charged over 5.0 V, indicating that the sulfur composite cell presented the intrinsic safety for overcharge. Overcharge can cause serious problems for the conventional Li ion cells. The overcharge test also showed that the sulfur composite cell was destroyed when the cell was charged over 4.0 V, resulting in that the cell cannot normally be discharged again. It is found, however, that the sulfur composite cell can be discharged again at very low current density of a 0.002-C rate after the cell was overcharged. Being much safer than lithium metal anode, the graphite anode was used to fabricate sulfur composite/graphite lithium ion cells with a prelithiated sulfur composite cathode, which was produced by electrochemical lithiation. The charge/discharge and cycling characteristics of the sulfur composite/graphite cell was investigated. The result showed that the sulfur composite/graphite cells can be normally cycled and showed the different voltages from that of the cell with the lithium metal anode. This paves the effective way to fabricate safer sulfur composite/graphite lithium ion cells.  相似文献   

11.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

12.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

13.
Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (X=0.17, 0.25, 0.33, 0.5) compounds are prepared by a simple combustion method. The Rietvelt analysis shows that these compounds could be classified as having the α-NaFeO2 structure. The initial charge-discharge and irreversible capacity increases with the decrease of x in Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2. Indeed, Li[Ni0.50Mn0.50]O2 compound shows relatively low initial discharge capacity of 200 mAh/g and large capacity loss during cycling, with Li[Ni0.17Li0.22Mn0.61]O2 and Li[Ni0.25Li0.17Mn0.58]O2 compounds exhibit high initial discharge capacity over 245 mAh/g and stable cycle performance in the voltage range of 4.8 -2.0 V. On the other hand, XANES analysis shows that the oxidation state of Ni ion reversibly changes between Ni2+ and about Ni3+, while the oxidation state of Mn ion sustains Mn4+ during charge-discharge process. This result does not agree with the previously reported ‘electrochemistry model’ of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2, in which Ni ion changes between Ni2+ and NI4+. Based on these results, we modified oxidation-state change of Mn and Ni ion during charge-discharge process.  相似文献   

14.
Cr0.1V2O5.15 was prepared by an oxalic acid assisted sol–gel method. X-ray diffraction showed that Cr doping induced a slight expansion (ΔV/V ≈ 2.3%) in the crystal lattice of V2O5. The electrochemical properties of Cr0.1V2O5.15 in the potential range of 3.8–2.0 V were studied by cyclic voltammetry, galvanostatic charge–discharge cycling and potentiostatic intermittent titration technique. Cyclic voltammetry showed that the irreversible phase transition of V2O5 during the first cycle was effectively prevented by Cr doping. This caused the good charge–discharge cycling performance of the doped material. The discharge capacities were recorded to be 200, 170 and 120 mAhg− 1 after fifty cycles at the C/10, C/2 and 1C rates, respectively. However, ex-situ X-ray diffraction showed that the crystal structure of the material was destroyed after long-term cycling. The lithium diffusion coefficient of Cr0.1V2O5.15 varied between 10− 11 and 10− 12 cm2 s− 1, which was larger than that of crystalline V2O5, and was close to those of metal doped V2O5 in previous reports. The improvement in lithium diffusion kinetics was regarded as an important reason for the good electrochemical performance of Cr0.1V2O5.15.  相似文献   

15.
Vanadium dioxide nanorods were synthesized through a hydrothermal reaction from V2O5 xerogel, poly(vinyl pyrrolidone) (PVP) and lithium perchlorate (LiClO4). The prepared samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical discharge–charge cycling in lithium battery. SEM images reveal the nanorods to have dimensions on the order of 1–3 μm in length and 10–50 nm in diameter. The measured initial discharge capacity of the lithium battery with a cathode made of VO2 (B) nanorods was 152 mA h/g.  相似文献   

16.
Solid solutions of (CsHSO4)1 − x(CsH2PO4)x (x = 0.25-0.75) were synthesized by mechanical milling method over a wide range of compositions. Superprotonic cubic phase was confirmed for all these samples between 293 and 420 K depending on its composition. These superprotonic phases have primitive cubic structure similar to that of CsH2PO4. The kinetic stability of the supercooled cubic phase depends both on the composition x and the humidity of surrounding atmosphere. The most stable composition of the cubic phase was found around x = 0.67 and could be maintained for several days even under ambient atmosphere. The ionic conductivities of these superprotonic phases reached 10− 2–10− 3 S∙cm− 1 at 450 K. With increasing x the ionic conductivity at the superprotonic phase decreased continuously associated with the increase of the activation energy. These findings suggest that the average number of the hydrogen bonds between XO4 (X = S, P) units plays an important role on the stability of the cubic phase and also on the conductivity.  相似文献   

17.
A comparative study concerning the electronic structure of the Mn5+ ion in the Li3PO4, Ca2PO4Cl, Sr5(PO4)3Cl host lattices has been carried out in the framework of the exchange charge model. The crystal field parameters have been evaluated using the structural data as the only input information. The 10 K absorption spectra of the investigated compounds have been measured in order to verify the correspondence between experimental and calculated energy levels. A systematic trend of the crystal field splitting of the most intense transitions has been evidenced and discussed by considering the symmetry properties of the coordination polyhedra around Mn5+.  相似文献   

18.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

19.
Detailed electrochemical investigations have been carried out on LiNi0.8Co0.17Al0.03O2 as cathode materials for lithium ion batteries in the potential range of 2.8-4.3 V. This sample showed an initial discharge capacity of 186 mAh/g which corresponds to 67% of its theoretical capacity. The effect of addition of LiCoO2 to LiNi0.8Co0.17Al0.03O2 in the ratio 10:90, 30:70, 50:50 has been studied. The results showed that the addition of LiCoO2 has improved the working voltage of the cell. In addition, the percentage retention (95%) of the cell is significantly increased in the composition ratio 50:50.  相似文献   

20.
Wei Yuan  Ji Yan  Zhiyuan Tang  Li Ma 《Ionics》2012,18(3):329-335
A novel ultrasonic-assisted sol–gel method is proposed to prepare Li3V2(PO4)3/C cathode material. X-ray diffraction analyses show that both Li3V2(PO4)3/C(A) synthesized by the ultrasonic-assisted sol–gel method and Li3V2(PO4)3/C(B) synthesized by a traditional sol–gel method have monoclinic structure. Scanning electron microscopy images indicate that the Li3V2(PO4)3/C(A) composite has a more uniform morphology than that of the Li3V2(PO4)3/C(B) composite. In the voltage range of 3.0–4.3 V (vs. Li/Li+), the initial specific discharge capacities of the Li3V2(PO4)3/C(A) and Li3V2(PO4)3/C(B) samples are 129.8 and 125.9 mAh g−1 at 1C rate (1C = 133 mA g−1), respectively. Furthermore, at 2-C charge/10-C discharge rate, the specific discharge capacity of the Li3V2(PO4)3/C(A) composite retains 113.2 mAh g−1 after 50 cycles, but the Li3V2(PO4)3/C(B) composite only presents a capacity of 94.8 mAh g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号