首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了一种应用在高功率VHF频段可变脉冲产生及辐射系统的组成。在实验室条件下,通过优化设计、调节实现了数ns至数十ns脉冲宽度辐射输出。利用开路容性天线加载可调电感原理,达到辐射脉冲宽度可变的目的,同时通过并联引入耗能大电感,实现减少辐射脉冲拖尾,增加系统效率的功能;并利用高能量、快脉冲电源为种子电源,为放电回路进行储能放电,利用这一体制减小了系统辐射脉冲间的同步抖动。  相似文献   

2.
针对激光近炸引信探测系统对激光脉冲前沿速率、激光脉宽和功率的需求,通过RLC放电回路理论分析,采用双晶体三极管互补驱动高速金属氧化物半导体场效应晶体管作为高速开关,应用微处理器C8051FXXX产生脉冲触发信号,设计出激光近炸引信高速窄脉冲大功率驱动电源.通过PSPICE软件分析与实验验证,结果表明该电源脉冲前沿上升时间约为4ns,脉宽10ns左右,激光峰值电流可以达50A.该研究有效提高了系统探测距离与抗云雾烟尘干扰的能力.  相似文献   

3.
水中脉冲放电产生过氧化氢及其影响因素   总被引:1,自引:1,他引:0       下载免费PDF全文
采用介质涂覆的球-筒电极结构,用以脉冲电压条件下在水中产生放电,通过比色法检测放电产生的过氧化氢,研究了不同电压脉冲幅值、脉冲宽度(储能电容的大小)、水的电导率以及脉冲频率对过氧化氢产生速率的影响,实验结果表明过氧化氢的产率随电压脉冲幅值的增大而增大。当电压脉冲幅值足够高时,水中放电由流注放电形式转换为电弧放电形式,此时过氧化氢产率也大幅提高,而在相同电压条件下,随水的电导率的增大,过氧化氢的产率减小。在相同电压下,脉冲频率的增大,导致放电平均功率增大,水中放电产生过氧化氢的浓度提高。在3.3 W功率时,120 min后水中过氧化氢浓度达到0.2 mmol/L,从而证明了所用电极结构的优越性。  相似文献   

4.
以钕玻璃为增益介质研制了高能啁啾脉冲激光放大器系统,实验演示输出啁啾脉冲能量在百焦耳量级时,光谱宽度保持在4—6 nm.最大能量168 J,相应谱宽5.5 nm,中心波长1054 nm.压缩脉冲宽度最短710 fs. 关键词: 啁啾脉冲放大 钕玻璃 高能拍瓦  相似文献   

5.
为了获得高功率激光束,提出利用双色镜对典型波长2种不同类型(脉冲、连续)的高能激光进行合束,以实现高功率高能量激光输出。通过对双色镜的热效应和合束光斑远场激光参数进行仿真分析计算,热效应仿真结果表明,在单束激光10 kW、光斑直径15 mm条件下,双色镜面型热形变量均方根值为0.004λ(λ=632.8 nm),满足光学元件面型小于0.03λ精度要求。搭建了一套基于双色镜的光谱合束系统,并分别进行了高功率连续激光与高功率连续激光、高功率连续激光与高能量脉冲激光的合束试验,合束效率高于95%。试验结果表明,光谱合束可有效应用于高能激光领域。  相似文献   

6.
皮秒级时间分辨超快高能脉冲激光光谱   总被引:1,自引:0,他引:1  
王小鹏  薛战理  曹锋 《应用光学》2012,33(3):604-608
介绍了一种利用光电摄谱法和条纹管相结合测量ps级时间分辨超快高能脉冲激光光谱的方法。论述了条纹相机工作原理和平面衍射光栅的分光原理,分析指出利用介绍的装置,可以实现波长300 nm ~1 600 nm、脉宽>2 ps超快高能脉冲激光的光谱测量。采用1 054 nm超快高能脉冲激光器,实验得到了条纹像,对条纹像进行数据处理后得到测量光谱曲线,通过能量标定后,得到了超快高能脉冲激光器实际光谱曲线,验证了ps级时间分辨超快高能脉冲激光光谱方法。讨论了系统中耦合透镜组对光谱测量和光纤色散角对条纹图像的影响,论述了ps级时间分辨超快高能脉冲激光光谱的作用。随着条纹管制造技术的飞速发展,该方法可用于fs级激光光谱的测量。  相似文献   

7.
传统的高功率重复频率脉冲功率源通常以低电压储能、升压、高压脉冲形成线、输出的顺序工作。因而系统至少包括低压储能和高压脉冲形成线两个储能环节,同时高压脉冲形成线的体积随着电压的升高快速增长。针对这些问题,课题组提出了一种高功率重复频率Marx型脉冲功率源小型化研究的设计思路和实现方式,并开展了相关技术研究。主要介绍了课题组在关键技术上取得的重要进展,包括高储能密度的储能/脉冲成形一体化技术、低抖动重复频率气体开关技术、低抖动高能触发技术、紧凑型Marx高压串叠技术等一系列关键技术。同时介绍了课题组研制的几种典型紧凑结构重复频率Marx型脉冲功率装置:同轴结构快Marx发生器、基于薄膜介质线的脉冲功率源、模块化低阻抗紧凑型Marx发生器、20 GW高功率重复频率脉冲驱动源。通过探讨关键技术研究及其发展现状,为未来脉冲功率源小型化研究的发展和应用方向提供参考。  相似文献   

8.
王磊  章程  罗振兵  王林  严萍  邵涛 《强激光与粒子束》2016,28(4):045013-145
为了产生高能等离子体合成射流,设计了一台面向等离子体合成射流应用的微秒脉冲源,输出电压为10 kV,重复频率为100 Hz,可承受高达250 A的放电电流。详细介绍了微秒脉冲源的工作原理,比较了不同放电电容对脉冲变压器原边电流及输出电压的影响。进一步将所设计的微秒脉冲源成功应用于等离子体合成射流实验中,研究了不同间距对等离子体合成射流的影响,比较了有无放电电容条件下的能量消耗率。实验结果表明:不同放电电容在相同激励器间距的条件下,击穿电压基本相同;击穿电压随激励器间距增大而增大。有放电电容能产生较大的放电电流,且电流值随电容值的增大而增大。有放电电容条件下的能量消耗率比无放电电容要高,易于产生高能的等离子体合成射流。  相似文献   

9.
孟绍贤 《物理学进展》2011,19(3):236-269
首先,评述了超强激光场的理论结果;其次,描述了超短光脉冲在密的气体和光学介质传播中的自作用;第三,评述了强场离化无碰撞等离子体中高度离化的离子产生,及高功率超短激光脉冲巨大强度的电场可用于电子加速;第四,分析了超短声脉冲和无线电脉冲的产生和应用,讨论了在不同条件下,激光辐射谐波和 X 射线激光的产生,进一步评述了超强激光脉冲与凝聚靶相互作用可以产生接近星体物质参数的高温、超密、强磁场和巨大压力等离子体;最后,简要叙述了激光激发核、核反应,高能电子─光子相互作用的可能效应及可能进行的实验。  相似文献   

10.
利用低温等离子体净化烟气中NO2和Hg是一种极具前景的技术,本文对脉冲介质阻挡放电条件下的NO/O2/N2/Hg0体系建立了反应动力学模型,对高能电子参与N2、O2和H2O电离解速率常数采用碰撞反应截面方法求取,模拟预测了活性自由基元(O、OH)、和Hg0等组分在反应器内随时间的变化规律.模拟结果表明:脉冲介质阻挡放电可以有效地脱除烟气中的NO,并促进单质汞的氧化;脉冲电源特性对脱除效率有明显的影响,电源纳秒级脉冲峰宽时间越长,电源脉冲放电频率越高, NO净化及单质汞的氧化效率越好.  相似文献   

11.
超强激光场物理学   总被引:1,自引:0,他引:1  
孟绍贤 《物理学进展》1999,19(3):236-269
首先,评述了超强激光场的理论结果;其次,描述了超短光脉冲在密的气体和光学介质传播中的自作用;第三,评述了强场离化无碰撞等离子体中高度离化的离子产生,及高功率超短激光脉冲巨大强度的电场可用于电子加速;第四,分析了超短声脉冲和无线电脉冲的产生和应用,讨论了在不同条件下,激光辐射谐波和 X 射线激光的产生,进一步评述了超强激光脉冲与凝聚靶相互作用可以产生接近星体物质参数的高温、超密、强磁场和巨大压力等离子体;最后,简要叙述了激光激发核、核反应,高能电子─光子相互作用的可能效应及可能进行的实验。  相似文献   

12.
强激光远场光斑强度分布测量技术   总被引:3,自引:2,他引:1       下载免费PDF全文
准确测量激光远场光斑强度时空分布是分析强激光大气传输效应和评价激光系统性能的有效手段。概述了测量激光光斑强度分布的几种方法及其适用性,重点叙述了基于阵列探测法的强激光远场光斑强度分布测量技术,总结分析了量热阵列法、光电阵列法和量热/光电复合法等三类阵列探测系统应用特点。最后介绍了两种分别用于测量连续波高能激光和重频脉冲激光的光电阵列靶斑仪,系统具有结构紧凑的特点,能够满足运动靶目标上强激光参数测量要求。  相似文献   

13.
激光脉冲加热下含湿多孔介质温湿信号的测量与分析   总被引:2,自引:0,他引:2  
本文介绍了一种动态测量激光脉冲加热下多孔介质温湿信号变化的方法。借助于响应时间为1μs的超小型薄膜电阻及日本 YOKOGAWA DL2700数字示波器,研制了能对激光脉冲加热下多孔介质温湿信号的变化迅速作出响应的测量系统。利用可编程NdYAG激光发生器触发高能流密度的小尺寸短脉冲激光,轰击有高空隙率及热延迟时间为秒量级的纸张,进行测定多孔介质温湿信号变化的实验。通过实验发现,在该测量系统下可观测到明显的湿纸张温度信号的阶跃与波动效应以及湿份信号的突变特征。信号洁净、干扰小、信噪比高,信号有良好的跟随性,从而为研究多孔介质超急速传热传质过程中热质的传递行为提供实验测量手段。  相似文献   

14.
探讨了脉冲储能型重复频率片状Yb:YAG激光放大器抽运过程中的自发辐射放大(ASE)效应和能量提取过程.在Yb3+离子抽运动力学的基础上,建立了抽运过程中的自发辐射放大模型,计算了Yb:YAG晶体中三维含时储能密度分布和全片可提取能量.讨论了不同介质尺寸、掺杂浓度及厚度、介质温度参数下,自发辐射放大对储能的影响.给出了较为优化的设计,将有助于基于Yb激光材料的大能量二极管抽运的固体激光器设计. 关键词: 脉冲储能 Yb:YAG激光放大器 自发辐射放大(ASE)  相似文献   

15.
纳秒脉冲表面介质阻挡放电特性实验研究   总被引:5,自引:4,他引:1       下载免费PDF全文
在常规大气环境条件下,基于单极性纳秒脉冲电源对表面介质阻挡放电特性进行了实验研究。结果表明:纳秒脉冲表面介质阻挡放电的本质是丝状放电,放电集中在电压脉冲的上升沿;激励电压和脉冲重复频率越大,放电越强烈,越接近均匀放电,但电压的作用更侧重于均匀性,而频率的作用则侧重于放电的强度;电极间隙的优化可以使表面介质阻挡放电特性最好;玻璃作为阻挡介质时容易发生沿面闪络。  相似文献   

16.
空间高能粒子辐照航天器电子器件诱发的毁伤和热演化特征,直接关系到航天器的在轨安全运行和在轨任务的顺利实施。本文利用自行构建的飞秒脉冲激光辐照系统、激光诱发毁伤的数据采集系统、数据读写系统和红外热成像系统,开展了不同激光输出重复频率、不同作用区域下辐照铁电存储器(FRAM)实验,获取激光辐照于铁电存储器被照面的稳态温度场和铁电存储器的暂态失效和永久失效出现时间,并观测了辐射效应对铁电存储器的毁伤效果,经MATLAB软件处理得到了激光辐照铁电存储器不同区域热演化过程的温度场分布。实验结果表明:在激光输出功率近似相同的飞秒脉冲激光辐照条件下,激光脉冲输出重复频率越低,诱发永久性毁伤出现时刻的时间越长,近似呈非线性增长;随着激光输出重复频率的增大,激光对铁电存储器的作用由激光电离存储器介质产生的高能带电粒子对铁电体自发极化的破坏为主,逐步转变为以热辐射与热应力诱发的毁伤;当激光在器件表面产生的最高温度接近存储器最高工作温度时,永久毁伤的出现时间将显著延长。并通过对回归参数的计算和假设检验,给出了回归参数的置信度1-α为95%的条件下激光辐照区域1与区域2的最高辐射温度与激光输出重复频率的拟合关系式。  相似文献   

17.
应用于脉冲功率系统的高储能密度电容器   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了现有技术条件下脉冲电容器的各种性能参数及其测试方法,包括储能密度、寿命、保压性能、绝缘电阻等;同时介绍了元件的主要分析测试手段,如大电测试、保压测试等,并研究了后处理工艺、介质系统优化和绝缘系统优化对电容器性能的影响。在此基础上,面向不同应用条件如大电流放电、长寿命、真空环境等,对高储能密度脉冲电容器进行研究,并给出相应的性能参数、限制条件和发展前景。研究结果表明:50 kV/20 F的电容器,可实现120 kA/80 s的大电流输出,并通过-50~60 ℃的高低温考核;基于绝缘系统优化的浸渍型脉冲电容器,充放电寿命为干式结构的2~3倍,储能密度为2.0 kJ/L时,寿命大于1 000次,储能密度为1.3 kJ/L时,寿命大于10 000次;1.4 kJ/L高储能密度电容器,可以工作在气压小于10-3 Pa的真空条件下,输出电流达100 kA。  相似文献   

18.
在常规大气环境条件下,基于单极性纳秒脉冲电源对表面介质阻挡放电特性进行了实验研究.结果表明:纳秒脉冲表而介质阻挡放电的本质是丝状放电,放电集中在电压脉冲的上升沿;激励电压和脉冲重复频率越大,放电越强烈,越接近均匀放电,但电压的作用更侧重于均匀性,而频率的作用则侧重于放电的强度;电极间隙的优化可以使表面介质阻挡放电特性最好;玻璃作为阻挡介质时容易发生沿面闪络.  相似文献   

19.
为了探索连续电磁发射用电感储能连续脉冲电源,首先对基于单模块高温超导脉冲变压器的连续脉冲电源电路及其实验验证结果进行了分析,然后在单模块的基础上设计了多模块的电路拓扑和多模块超导脉冲变压器线圈模型,最后利用多模块脉冲电源的设计参数,进行了连续脉冲成形仿真。通过构建3组环形结构,每组12个模块的高温超导脉冲变压器,在0.1Hz的固定工作频率下,系统总储能5.7MJ,负载电流脉冲峰值可达640k A,放电结束后原边电感回收的剩余能量占总储能的44.4%。仿真结果证明了脉冲电源模块化方案的可行性,在放电结束后的系统剩余能量能够有效回收利用,不过断路开关电压仍然较大,需要较多的断路开关串联使用。  相似文献   

20.
 设计了一种与高功率超短脉冲激光放大过程中获得的总增益、增益介质的带宽、激光带宽、脉冲中心波长等参数相关的调制函数,对激光放大过程中的光谱增益窄化进行补偿。此调制函数的优越性在于,对不同性能的激光系统,无需改变调制函数的形式就能适用。通过数值模拟的方法,讨论了在不同增益介质带宽、激光带宽、脉冲中心波长下的补偿效果。此调制函数在高功率超短脉冲激光系统中有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号