首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Structural damage detection using time domain vibration responses has advantages such as simplicity in calculation and no requirement of a finite element model, which attracts more and more researchers in recent years. In present paper, a new approach to detect the damage based on the auto correlation function is proposed. The maximum values of the auto correlation function of the vibration response signals from different measurement points are formulated as a vector called Auto Correlation Function at Maximum Point Value Vector, AMV for short. The relative change of the normalized AMV before and after damage is used as the damage index to locate the damage. Sensitivity analysis of the normalized AMV with respect to the local stiffness shows that the normalized AMV has a sharp change around the local stiffness change location, which means the normalized AMV is a good indicator to detect the damage even when the damage is very small. Stiffness reduction detection of a 12-story frame structure is provided to illustrate the validity, effectiveness and the anti-noise ability of the proposed method. Comparison of the normalized AMV and the other correlation-function-based damage detection method shows the normalized AMV has a better detectability.  相似文献   

2.
Spectral finite element methods are used to compute exact vibration solutions of structural models at specific frequencies. The applicability of these methods to certain areas of structural dynamics is limited by two major factors: the lack of separate structural operators (mass, damping, and stiffness matrices), and the subsequent difficulty in computing mode shapes via eigenvalue decomposition. In the work presented in this article, a method is investigated to accurately calculate spectral finite elements while overcoming these limitations. The approach incorporates a two-dimensional, discrete solution utilizing a wavenumber-based gridding technique to compute frequency-dependent local mass, damping, and stiffness matrices which can be assembled into the global structural operators. Computed models are able to be used for precise vibration analysis as well as modal analysis via eigenvalue decomposition of the structural operators.  相似文献   

3.
4.
5.
A damage identification approach using train-induced responses and sensitivity analysis is proposed for the nondestructive evaluation of railway bridges. The dynamic responses of railway bridges under moving trains composed of multiple vehicles are calculated by a train-bridge dynamic interaction analysis. Using the stiffness variation of the bridge element as an index for damage identification, the sensitivities of train-induced bridge responses to structural damage are analyzed and the sensitivity matrices are formed. By comparing the theoretical measurement responses of one measurement point in two different states, the damage indices of all elements are updated iteratively, and finally the absolute or relative damage is located and quantified. A three-span continuous bridge numerical example proves that the proposed dynamic response sensitivity-based FE model updating damage identification method is not only effective to detect local damage of railway bridges, but also insensitive to the track irregularity and the measurement noise.  相似文献   

6.
Various researchers have contributed to the identification of the mass and stiffness matrices of two dimensional (2-D) shear building structural models for a given set of vibratory frequencies. The suggested methods are based on the specific characteristics of the Jacobi matrices, i.e., symmetric, tri-diagonal and semi-positive definite matrices. However, in case of three dimensional (3-D) structural models, those methods are no longer applicable, since their stiffness matrices are not tri-diagonal. In this paper the inverse problem for a special class of vibratory structural systems, i.e., 3-D shear building models, is investigated. A practical algorithm is proposed for solving the inverse eigenvalue problem for un-damped, 3-D shear buildings. The problem is addressed in two steps. First, using the target frequencies, a so-called normalized eigenvector matrix, which is a banded matrix containing the information related to the frequencies and mode shapes of the target structural system, is determined. In this regard, similar to the solution of inverse problem for 2-D shear building structural models in which an auxiliary structure is constructed by adding constraints (or springs) to the original system, three auxiliary structures are proposed to solve the problem for 3-D cases. In the second step, the normalized eigenvector matrix is utilized to obtain the normalized stiffness matrix; in turn, this matrix is decomposed into the stiffness and mass matrices of the system. Finally, a numerical example is presented to demonstrate the efficiency of the proposed algorithm in determining the mass and stiffness matrices of a 3-D structural model for a given set of target vibrational frequencies.  相似文献   

7.
Uncertainty analysis near bifurcation of an aeroelastic system   总被引:1,自引:0,他引:1  
Variations in structural and aerodynamic nonlinearities on the dynamic behavior of an aeroelastic system are investigated. The aeroelastic system consists of a rigid airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We follow two approaches to determine the effects of variations in the linear and nonlinear plunge and pitch stiffness coefficients of this aeroelastic system on its stability near the bifurcation. The first approach is based on implementation of intrusive polynomial chaos expansion (PCE) on the governing equations, yielding a set of nonlinear coupled ordinary differential equations that are numerically solved. The results show that this approach is capable of determining sensitivity of the flutter speed to variations in the linear pitch stiffness coefficient. On the other hand, it fails to predict changes in the type of the instability associated with randomness in the cubic stiffness coefficient. In the second approach, the normal form is used to investigate the flutter (Hopf bifurcation) boundary that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing LCO. The results show that this mathematical approach provides detailed aspects of the effects of the different system nonlinearities on its dynamic behavior. Furthermore, this approach could be effectively used to perform sensitivity analysis of the system's response to variations in its parameters.  相似文献   

8.
Based on the generalized Lorenz–Mie theory that provides the general framework, an analytic solution to Gaussian beam scattering by a chiral sphere is constructed, by expanding the incident Gaussian beam, scattered fields and internal fields in terms of spherical vector wave functions. The unknown expansion coefficients are determined by a system of equations derived from the boundary conditions. For a localized beam model, numerical results of the normalized differential scattering cross section are presented.  相似文献   

9.
《Physics letters. A》2019,383(24):2883-2890
The property of matter-wave vector solitons in a spin-1 Bose-Einstein condensate with spin-orbit and Zeeman couplings is investigated by multiscale perturbation method. The excitation spectrum and the corresponding state vectors of the system are obtained analytically, and they can be adjusted by the parameters of the system. The bright and dark vector solitons are formulated by reducing the three-component coupled Gross-Pitaeviskii equations to a standard nonlinear Schrödinger equation, which has the solutions of the bright and dark solitons with positive or negative mass depending on the product of the effective dispersive and nonlinear coefficients. The moving vector solitons are demonstrated by adjusting specific momentum near the energy minimum. Finally, the magnetized features of the vector solitons are discussed by the spin polarization of the system.  相似文献   

10.
L Wang  S I Rokhlin 《Ultrasonics》2001,39(6):413-424
The numerical instability problem in the standard transfer matrix method has been resolved by introducing the layer stiffness matrix and using an efficient recursive algorithm to calculate the global stiffness matrix for an arbitrary anisotropic layered structure. For general anisotropy the computational algorithm is formulated in matrix form. In the plane of symmetry of an orthotropic layer the layer stiffness matrix is represented analytically. It is shown that the elements of the stiffness matrix are as simple as those of the transfer matrix and only six of them are independent. Reflection and transmission coefficients for layered media bounded by liquid or solid semi-spaces are formulated as functions of the total stiffness matrix elements. It has been demonstrated that this algorithm is unconditionally stable and more efficient than the standard transfer matrix method. The stiffness matrix formulation is convenient in satisfying boundary conditions for different layered media cases and in obtaining modal solutions. Based on this method characteristic equations for Lamb and surface waves in multilayered orthotropic media have been obtained. Due to the stability of the stiffness matrix method, the solutions of the characteristic equations are numerically stable and efficient. Numerical examples are given.  相似文献   

11.
The detection and identification of structural damage is important in monitoring of structural systems during their lifetime. Many researchers have proposed a variety of damage evaluation methods based on structural monitoring. The stiffness matrix is used in some conventional damage detection methods; however, it leads to inevitable error due to the lack of data provided by structural monitoring. To overcome this problem, this study introduces a new damage evaluation method that identifies the structural damage in a shear building based on a genetic algorithm using the structural flexibility matrix with dynamic analyses. The proposed method enables the deduction of the extent and location of structural damage, even when there is insufficient data on the dynamic characteristics and insufficient accurate measurements of the structural stiffness and mass. The validity of the proposed damage evaluation method is demonstrated through numerical analyses using OpenSees.  相似文献   

12.
This paper presents an approach to identify both the location and severity evolution of damage in engineering structures directly from measured dynamic response data. A relationship between the change in structural parameters such as stiffness caused by structural damage development and the measured dynamic response data such as accelerations is proposed, on the basis of the governing equations of motion for the original and damaged structural systems. Structural damage parameters associated with time are properly chosen to reflect both the location and severity development over time of damage in a structure. Basic equations are provided to solve the chosen time-dependent damage parameters, which are constructed by using the Newmark time step integration method without requiring a modal analysis procedure. The Tikhonov regularisation method incorporating the L-curve criterion for determining the regularisation parameter is then employed to reduce the influence of measurement errors in dynamic response data and then to produce stable solutions for structural damage parameters. Results for two numerical examples with various simulated damage scenarios show that the proposed method can accurately identify the locations of structural damage and correctly assess the evolution of damage severity from information on vibration measurements with uncertainties.  相似文献   

13.
This paper presents an effective approach for directly updating finite element model from measured incomplete vibration modal data with regularised algorithms. The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness change and the modal data measurements of the tested structure such as measured mode shape readings. In order to adjust structural parameters at detailed locations, structural updating parameters will be selected at critical point level to reflect the modelling errors at the connections of structural elements. These updating parameters are then evaluated by an iterative or a direct solution procedure, which gives optimised solutions in the least squares sense without requiring an optimisation technique. In order to reduce the influence of modal measurement uncertainty, the Tikhonov regularisation method incorporating the L-curve criterion is employed to produce reliable solutions for the chosen updating parameters. Numerical simulation investigations and experimental studies for the laboratory tested space steel frame structure are undertaken to verify the accuracy and effectiveness of the proposed methods for adjusting the stiffness at the joints of structural members. The results demonstrate that the proposed methods provide reliable estimates of finite element model updating using the measured incomplete modal data.  相似文献   

14.
The development of a methodology for accurate and reliable condition assessment of civil structures has become very important. The finite element (FE) model updating method provides an efficient, non-destructive, global damage identification technique, which is based on the fact that the modal parameters (eigenfrequencies and mode shapes) of the structure are affected by structural damage. In the FE model the damage is represented by a reduction of the stiffness properties of the elements and can be identified by tuning the FE model to the measured modal parameters. This paper describes an iterative sensitivity based FE model updating method in which the discrepancies in both the eigenfrequencies and unscaled mode shape data obtained from ambient tests are minimized. Furthermore, the paper proposes the use of damage functions to approximate the stiffness distribution, as an efficient approach to reduce the number of unknowns. Additionally the optimization process is made more robust by using the trust region strategy in the implementation of the Gauss-Newton method, which is another original contribution of this work. The combination of the damage function approach with the trust region strategy is a practical alternative to the pure mathematical regularization techniques such as Tikhonov approach. Afterwards the updating procedure is validated with a real application to a prestressed concrete bridge. The damage in the highway bridge is identified by updating the Young's and the shear modulus, whose distribution over the FE model are approximated by piecewise linear functions.  相似文献   

15.
Using methods developed in field theory and statistical mechanics, especially in the context of the Anderson model as generalised by Wegner, a novel approach to the statistical theory of nuclear reactions is developed. A finite set of N bound states, coupled to each other by an ensemble of Gaussian orthogonal matrices, is considered and coupled to a set of channels via fixed coupling matrix elements. The ensemble average and the variance of the elements of the nuclear scattering matrix are evaluated, using the method of a generating function combined with the replica trick, followed by the Hubbard-Stratonovitch transformation and a modified loop expansion. In the limit N → ∞, it is shown quite generally that, aside from a trivial dependence on average S-matrix elements, the variance depends only on the transmission coefficients, and that the correlation width of a pair of S-matrix elements is given by a universal function of the transmission coefficients. A modified loop expansion yields an asymptotic series valid for strong absorption. The terms in this series are partly novel, and partly coincide with results obtained earlier in the framework of a model which did not take account of the GOE eigenvalue fluctuations. This suggests that average cross sections are mainly sensitive to the stiffness of the GOE spectrum. Fluctuation properties are also derived, and the link to Ericson fluctuation theory is established.  相似文献   

16.
The goal of this work is to provide a method for choosing joining (e.g., bolt) locations for attaching structural reinforcements onto complex structures. The joining locations affect structural performance criteria such as the frequency response and the static compliance of the modified structure. One approach to finding improved/optimal joining locations is to place the joints such that the total amount of energy input into the structure (from external forces) is lowered/minimized, thus ensuring that the performance of the structure is least affected by the structural modifications. However, such an approach does not account for the stresses in the joints. Therefore, in this work, the amount of strain energy concentrated in the joints is also considered. The cost function for this optimization problem is then composed of two energies. These energies are different for the undamped and damped cases. Herein, the focus is on the (more realistic) damped case. The cost function is minimized by a modified optimality criteria method. This process is time consuming because it requires the calculation of sensitivities of the joint strain energy, which in turn requires the calculation of the displacements of all candidate joint locations by using the system-level mass and stiffness matrices and force vector (at each frequency in the range of interest). To address this issue, a series of complex algebraic manipulations and approximations are used to significantly reduce the computational cost. In addition, for the case where structural and geometrical variations are necessary, parametric reduced-order models are used to compute the cost function with further significant gains in computational speed. Numerical results for improved/optimal joining are presented for representative complex structures with structural variabilities.  相似文献   

17.
采用微波消解技术,建立了一种测定头足类食药两用生物曼氏无针乌贼肉和海螵蛸中Cr,Mn,Cu,Zn,As,Cd,Hg和Pb等八种微量元素含量的ICP-MS法.测定元索校正曲线的相关系数都在0.997 3以上,样品分析结果的相对标准偏差在2.4%~8.7%之间,加标回收率在96.5%~106.3%之间,最低检出限在0.002~0.032μg·L~(-1)之间.研究结果表明:曼氏无针乌贼肉和海螵蛸中含有丰富的元素Cu和Zn,但是苇金属元素Cd和As含最也超过规定标准,因此曼氏无针乌贼进入市场时,需要对Cd和As含量进行严格的检查.研究结果不仅对曼氏无针乌贼质量控制具有指导意义,而且可为曼氏无针乌贼的养殖、资源利用及产品出口提供科学依据.  相似文献   

18.
A Ritz vector approach is used to develop new formulations for evaluating the static and the dynamic characteristics of rectangular plates with edge beams. Unlike previous studies in which stiffness coefficients with specified distributions along the plate edges are used to represent the effect of edge restraints, the effect of elastic edge restraints is accounted for by including appropriate integrals for edge beams in the expressions for total kinetic and potential energies in a Rayleigh-Ritz approach. The effect of various types of boundary conditions at the beam ends is accounted for by considering the corresponding Ritz vectors. The contribution of beam mass to the total kinetic energy is also considered in the proposed approach. This effect has often been neglected in the previous studies but can be significant in some applications. The results obtained from the application of the proposed approach to a variety of examples are compared with the corresponding results obtained from the finite element analysis.  相似文献   

19.
In partial eigenvalue assignment, not all eigenvalues of the open loop system matrix are modified through a multiple input state or output feedback controller. This freedom available to assign selected eigenvalues of the closed loop system matrix has been widely used in design contexts such as to eliminate spillover effects in structural control problems. Similar approach is also required to modify damping and/or stiffness characteristics in selected eigenmodes of a damaged structure. When an external force acts on the damaged structure, partial eigenvalue assignment in this fashion will attempt to use minimal control effort and keep the structure active with safe operation. In this paper, a new approach to partial eigenvalue assignment and its application to structural damage mitigation are presented. A three mass spring-damper model with damage in one of the springs is illustrated with damping modifications at specific eigenmodes. The procedure is repeated for a second example, which is a cantilever beam modeled using two inputs and 10 state variables.  相似文献   

20.
Vibration response of misaligned rotors   总被引:3,自引:0,他引:3  
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号