首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
刘彰宜  吴九汇  沈礼 《计算物理》2013,30(6):886-894
将双正交小波系统和谱元法的思想结合得到一般有界区域中的双正交小波元,将小波元的边界适应性推广到一阶微分的情形,通过匹配得到严格满足边界条件的小波基函数;基于小波元发展一种一维声子晶体能带计算方法.该方法利用声子晶体本身的结构特点,兼顾小波在数值分析中的优势和边界条件的满足,与周期小波法相比,具有更高的计算精度和计算效率.  相似文献   

2.
A spectral finite element model (SFEM) for analysis of coupled broadband wave propagation in composite tubular structure is presented. Wave motions in terms of three translational and three rotational degrees of freedom at tube cross-section are considered based on first order shear flexible cylindrical bending, torsion and secondary warping. Solutions are obtained in wavenumber space by solving the coupled wave equation in 3-D. An efficient and fully automated computational strategy is developed to obtain the wavenumbers of coupled wave modes, spectral element shape function, strain-displacement matrix and the exact dynamic stiffness matrix. The formulation emphasizes on a compact matrix methodology to handle large-scale computational model of built-up network of such cylindrical waveguides. Thickness and frequency limits for application of the element is discussed. Performance of the element is compared with analytical solution based on membrane shell kinematics. A map of the distribution of vibrational modes in wavelength and time scales is presented. Effect of fiber angle on natural frequencies, phase and group dispersions are also discussed. Numerical simulations show the ease with which dynamic responses can be obtained efficiently. Parametric studies on a clamped-free graphite-epoxy composite tube under short-impulse load are carried out to obtain the effect of various composite configurations and tube geometries on the response.  相似文献   

3.
This paper describes a new magnetic resonance spectroscopic imaging (MRSI) technique based upon the discrete wavelet transform to reduce acquisition time and cross voxel contamination. Prototype functions called wavelets are used in wavelet encoding to localize defined regions in localized space by dilations and translations. Wavelet encoding in MRSI is achieved by matching the slice selective RF pulse profiles to a set of dilated and translated wavelets. Single and dual band slice selective excitation and refocusing pulses, with profiles resembling Haar wavelets, are used in a spin-echo sequence to acquire 2D-MRSI wavelet encoding data. The 2D space region is spanned up to the desired resolution by a proportional number of dilations (increases in the localization gradients) and translations (frequency shift) of the Haar wavelets (RF pulses). Acquisition time is reduced by acquiring successive MR signals from regions of space with variable size and different locations with no requirement for a TR waiting time between acquisitions. An inverse wavelet transform is performed on the data to produce the correct spatial MR signal distribution.  相似文献   

4.
轴对称体声振耦合的边界子波谱与有限元耦合方法   总被引:3,自引:0,他引:3  
探讨了子波在Helmholtz积分方程及声振耦合中的应用,在建立了求解轴对称Helmholtz积分方程的子波谱方法的基础上,构造了轴对称子波谱与轴对称有限元的耦合方法,该方法可以处理轴对称问题的任意边界条件.进行了声振耦合问题的模态分析.  相似文献   

5.
In waveguide structures, waves may be partially reflected by local non-uniformities such as cracks and other defects. The reflection and transmission characteristics associated with the presence of a discontinuity may be used, in principle, to give some indication of both the location and size of the defect. A combined spectral element and finite element (SE/FE) method has been used previously to investigate the effects of local non-uniformities at relatively low frequencies. However, for analysis at higher frequencies, where complex deformation of the waveguide occurs, it is necessary to extend this approach. Such high frequency analysis is necessary if small defects are to be located within the waveguide cross-section. In order to investigate wave propagation at higher frequencies, a combined spectral super element and finite element (SSE/FE) method is presented. This method allows the transmission, reflection and wave conversion at discontinuities to be determined for complex waveguides. As an example of the use of this method, wave reflection and transmission in rails are estimated at frequencies between 20 and 40 kHz for various notional sawcut-like defects of progressively increasing size. This shows the feasibility of the approach for realistic waveguides. However, from these simulations it is shown that defects have to be quite large before they can be detected using a single transducer position on the rail cross-section using train-induced vibration.  相似文献   

6.
《Physica A》2005,357(1):71-78
The time evolution of complex systems usually can be described through stochastic processes. These processes are measured at finite resolution, which necessarily reduces them to finite sequences of real numbers. In order to relate these data sets to realizations of the original stochastic processes (to any functions, indeed) it is obligatory to choose an interpolation space (for example, the space of band-limited functions). Clearly, this choice is crucial if the intent is to approximate optimally the original processes inside the interval of measurement. Here, we argue that discrete wavelets are suitable to this end. The wavelet approximations of stochastic processes allow us to define an entropy measure for the order–disorder balance of evolution regimes of complex systems, where order is understood as confinement of energy in simple local modes. We calculate exact results for the fractional Brownian motion (fBm), with application to Kolmogorov K41 theory for fully developed turbulence.  相似文献   

7.
The aim of this paper is to introduce a new finite spectral element of a cracked Timoshenko beam for modal and elastic wave propagation analysis. The proposed approach deals with the spectral element method. This method is suitable for analyzing wave propagation problems as well as for calculating modal parameters of the structure. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack, on the wave propagation is examined. Responses obtained at different points of the beam are presented. Proper analysis of these responses allows one to indicate the crack location in a very precise way. This fact is very promising for the future work in the damage detection field.  相似文献   

8.
The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.  相似文献   

9.
We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures. Simulation models of three-dimensional(3D) aluminum plates and composite laminates are established by ABAQUS software, where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage. The interactions between the S_0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated. Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes. There is a positive correlation among crack length, height, and sum and difference frequency amplitudes for an aluminum plate, with both amplitudes decreasing as crack thickness increased, i.e.,nonlinear effect weakens as the micro-crack becomes thicker. The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates. Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.  相似文献   

10.
Interaction of the fundamental shear horizontal mode with through-thickness cracks in an isotropic plate is studied in the context of low frequency array imaging for ultrasonic guided wave nondestructive evaluation with improved resolution. Circular wave fronts are used and the symmetric case where a line from the wave source bisects the crack face normally is considered. Finite element simulations are employed to obtain trends subject to analytical and experimental validation. The influence of the crack length and of the location of source and measurement positions on the specular reflection from the crack face is first examined. These studies show that low frequency short range scattering is strongly affected by diffraction phenomena, leading to focusing of energy by the crack in the backscatter direction. Study of the diffraction from the crack edges reveals contributions due to a direct diffraction at the edges and multiple reverberations across the crack length. A simple diffraction model is shown to adequately represent cracks up to moderate lengths, providing an easy means of estimating the far field of the waves. The presence of multiple diffraction components is quantitatively established and surface waves on the crack face are identified as equivalent to low frequency symmetric modes of rectangular ridge waveguides.  相似文献   

11.
Solitary Wave and Wavelet   总被引:1,自引:0,他引:1  
In this paper, it is shown that the homoclinic orbits exist in iterated functional systems, so do the solitary wave structures. Moreover, Harr father wavelet, Mexican Cap wavelet, and other closed form wavelets have this solitary wave structure, too. So wavelet is a certain kind of solitary wave.  相似文献   

12.
Free wave propagation in fluid-filled corrugated pipes is analyzed using finite element methods in combination with a wave-based approach. By combining discretized models with a wave-based approach, complex mechanism of wave motion in the three-dimensional waveguide is fully included. The pipes are treated as waveguides having periodic properties in the direction of wave propagation. The analysis of these guided waves leads to dispersion curves which show the strong frequency-dependency of the different wave modes. The method also allows the inclusion of coupling between fluid-borne and structure-borne wave modes which occur at the acoustic-structure interface. Phase and group velocities of the wave modes are derived in postprocessing steps. Additionally, the energy ratio of the fluid-domain and solid-domain vibrational energies is computed. Finally, linear damping models are included in order to explore wave mode attenuation.  相似文献   

13.
电容提取的新摄动方程及小波边界元解法   总被引:1,自引:0,他引:1  
提出一种解决含高电容率介质结构电容提取问题的新摄动方程,使计算时间减少一半.建立新摄动方程的快速小波Galerkin边界元解法.算例证明新摄动方程精度高且受介质电容率影响小;用小波Galerkin边界元求解的效率高,时间和内存消耗达到最优O(N)(N为未知量数目).  相似文献   

14.
There are stable wavelets which satisfy the Schrödinger equation. The motion of a wavelet is determined by a set of ordinary differential equations. In a certain limit, a wavelet turns out to be the known representation of a classical material point. A de Broglie wave is constructed by superposing similar free wavelets. Conventional energy eigensolutions of the Schrödinger equation can be interpreted as ensembles of wavelets. If the dynamics of wavelets form the quantum mechanical counterpart of Newton's dynamics of particles, then conventional quantum mechanics is the counterpart of Gibbs's mechanics of ensembles. In this way, conventional quantum mechanics is reinterpreted on a deterministic basis. A difficulty of quantum field theory is predictable from this point of view.  相似文献   

15.
A construction of multiple knot B-spline wavelets has been given in [C. K. Chui and E. Quak, Wavelet on a bounded interval, In: D. Braess and L. L. Schumaker, editors. Numerical methods of approximation theory. Basel: Birkhauser Verlag; (1992), pp. 57-76]. In this work, we first modify these wavelets to solve the elliptic (partially) Dirichlet boundary value problems by Galerkin and Petrov Galerkin methods. We generalize this construction to two dimensional case by Tensor product space. In addition, the solution of the system discretized by Galerkin method with modified multiple knot B-spline wavelets is discussed. We also consider a nonlinear partial differential equation for unsteady flows in an open channel called Saint-Venant. Since the solving of this problem by some methods such as finite difference and finite element produce unsuitable approximations specially in the ends of channel, it is solved by multiple knot B-spline wavelet method that yields a very well approximation. Finally, some numerical examples are given to support our theoretical results.  相似文献   

16.
A popular wavelet reference [W] states that “in theoretical and practical studies, the notion of (wavelet) regularity has been increasing in importance.” Not surprisingly, the study of wavelet regularity is currently a major topic of investigation. Smoother wavelets provide sharper frequency resolution of functions. Also, the iterative algorithms to construct wavelets converge faster for smoother wavelets. The main goals of this paper are to extend, refine, and unify the thermodynamic approach to the regularity of wavelets and to devise a faster algorithm for estimating regularity. The thermodynamic approach works equally well for compactly supported and non-compactly supported wavelets, and also applies to non-analytic wavelet filters. We present an algorithm for computing the Sobolev regularity of wavelets and prove that it converges with super-exponential speed. As an application we construct new examples of wavelets that are smoother than the Daubechies wavelets and have the same support. We establish smooth dependence of the regularity for wavelet families, and we derive a variational formula for the regularity. We also show a general relation between the asymptotic regularity of wavelet families and maximal measures for the doubling map. Finally, we describe how these results generalize to higher dimensional wavelets. The work of the second author was partially supported by a National Science Foundation grant DMS-0355180.  相似文献   

17.
The forced response of waveguides subjected to time harmonic loading is treated. The approach starts with the wave and finite element (WFE) method where a segment of the waveguide is modeled using traditional finite element methods. The mass and stiffness matrices of the segment are used to formulate an eigenvalue problem whose solution yields the wave properties of the waveguide. The WFE formulation is used to obtain the response of the waveguide to a convected harmonic pressure (CHP). Since the Fourier transform of the response to a general excitation is a linear combination of the responses to CHPs, the response to a general excitation can be obtained via an inverse Fourier transform process. This is evaluated analytically using contour integration and the residue theorem. Hence, the approach presented herein enables the response of a waveguide to general loading to be found by: (a) modeling a segment of the waveguide using finite element methods and post-processing it to obtain the wave characteristics, (b) using Fourier transform and contour integration to obtain the wave amplitudes and (c) using the wave amplitudes to find the response at any point in the waveguide. Numerical examples are presented.  相似文献   

18.
Recent analytical and numerical results concerning the role of the second-order cyclotron resonance effects in formation of discrete emissions in the magnetosphere are reviewed. Peculiarities of whistler cyclotron interactions with energetic particles having sharp (step-like or beam-like) distribution functions evolving in space and time are studied. Formation of such distributions is considered, and an analytical self-consistent theory of the second-order cyclotron resonance effects is developed. In particular, characteristics of electron beams produced by the interaction of a VLF wave packet from a ground-based transmitter are studied. It is shown that spatial and temporal gradients of the parallel velocity of the beams formed can be opposite to the case of a pure adiabatic motion of a single particle. Such a behavior can be significant for the generation of secondary emissions. It is proven that the optimal conditions for the instability occur for a nonstationary quasi-monochromatic wavelets whose frequency changes in time. The theory developed permits one to estimate the wave amplification and spatio-temporal characteristics of these wavelets. Numerical results on beam formation and generation of secondary emissions are presented. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 8, pp. 713–727, August 1999.  相似文献   

19.
A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-dimensional phononic crystals computed with the wavelet method and the well-known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible for efficient band gap computation of more complex phononic structures. Supported by the National Natural Science Foundation of China (Grant No. 10632020)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号