首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple method has been developed for growth of well-aligned carbon nanotubes (CNTs) on nickel-film quartz plates by chemical vapor deposition (CVD) with organic ethylenediamine as a precursor. High-density carbon nanotubes were vertically aligned on a large area of the quartz plates. The height of the nanotube array could be controlled by varying the CVD time. High-resolution transmission electron microscopy analysis revealed that the multiwalled CNTs were composed of crystalline graphitic sheets with a bamboo structure. Received: 28 May 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

2.
Aligned multi-walled carbon nanotubes (MWCNTs) with high purity and bulk yield were achieved on a silicon substrate by an aerosol-assisted chemical vapor deposition. The introduction of specific amounts of water vapor played a key role in in situ controlling the purity and surface defects of the nanotubes. The morphology, surface quality and structure of MWCNTs were characterized by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Crystallinity and defects of the MWCNTs’ were investigated by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. In this work, water vapor was found to provide a weak oxidative environment, which enhanced and purified the MWCNTs’ growth. However, excessive water vapor would inhibit the MWCNTs growth with a poor surface quality. In addition, it has been found that the surface morphology of the CNTs can be modified intentionally through producing some surface defects by tuning the amount of the water vapor, which may offer more nucleation sites on the chemically inert CNT surface for various applications such as catalyst support.  相似文献   

3.
The growth process of carbon nanotubes (CNTs) under CNT-CNT and CNT-substrate interactions has been observed directly by environmental transmission electron microscopy. Even a free standing CNT occasionally swings during the growth until it touches the substrate. In addition, we show that the growth direction of CNTs changes due to the interaction between CNTs.  相似文献   

4.
Nitrogen-doped Y-junction bamboo-shaped carbon nanotubes were synthesized by chemical vapor deposition of monoethanolamine/ferrocene mixture on GaAs substrate at 950 °C. The use of monoethanolamine as the C/N feedstock simplifies the experimental arrangement by producing ammonia during the growth process. The structure, morphology and graphitization of as-grown nitrogen-doped carbon nanotubes (CNx) were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy analysis. TEM analysis indicates that nanotubes have a bamboo-like structure. The nitrogen concentration on as-grown CNx nanotube was found to be 7.8 at.% by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis also indicated that there are two different types of nitrogen atoms (pyridinic and graphitic) in these materials. The possible growth mechanism of formation of Y-junction CNx nanotubes was briefly discussed. Field emission measurement suggested that as-grown CNx nanotubes are excellent emitters with turn-on and threshold fields of 1.6 and 2.63 V/μm, respectively. The result indicated that monoethanolamine proves to be an advantageous precursor to synthesize Y-junction nitrogen-doped carbon nanotubes and such nanotubes might be an effective material to fabricate various field emission devices.  相似文献   

5.
Dot array and line patterns of multi-walled carbon nanotubes (MWCNTs) were successfully grown by laser-induced chemical vapor deposition (LCVD) on a transparent substrate at room temperature. In the proposed technique, a Nd:YVO4 laser with a wavelength of 532 nm irradiates the backside of multiple catalyst layers (Ni/Al/Cr) through a transparent substrate to induce a local temperature rise, thereby allowing the direct writing of dense dot and line patterns of MWCNTs below 10 μm in size to be produced with uniform density on the controlled positions. In this LCVD method, a multiple-catalyst-layer with a Cr thermal layer is the central component for enabling the growth of dense MWCNTs with good spatial resolution.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNTs) were synthesized a by chemical vapour deposition method. The effect of calcination at temperatures ranging from 300 to 550°C in exposing the metal nanoparticles within the nanotube bundles was studied. The degree of degradation of the structural integrity of the MWCNTs during the thermal process was studied by Raman spectroscopy, X-ray diffraction analysis, field-emission scanning electron microscopy, and transmission electron microscopy. The thermal behaviour of the as-prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air, at 400°C for 1 h, was found to be an efficient and simple method to extract metallic impurities from the amorphous carbon shells with minimal damage to the tube walls and lengths. The nanotubes were observed to be damaged at temperatures higher than 450°C.  相似文献   

7.
The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWCNTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800°C, while the MWCNTs with FeSi catalysts remained intact up to 1050°C except for better crystallinity. The physisorbed carbon and/or hydrocarbon on surfaces and super-saturated carbon in the Ni catalysts should be responsible for the phenomena.  相似文献   

8.
The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (>0.5 ms) was implemented to rapidly heat (>3×104°C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.  相似文献   

9.
Multiwalled carbon nanotube (CNT) arrays were grown by catalytic thermal decomposition of acetylene, over Fe-catalyst deposited on Si-wafer in the temperature range 700-750 °C. The growth parameters were optimized to obtain dense arrays of multiwalled CNTs of uniform diameter. The vertical cross-section of the grown nanotube arrays reveals a quasi-vertical alignment of the nanotubes. The effect of varying the thickness of the catalyst layer and the effect of increasing the growth duration on the morphology and distribution of the grown nanotubes were studied. A scotch-tape test to check the strength of adhesion of the grown CNTs to the Si-substrate surface reveals a strong adhesion between the grown nanotubes and the substrate surface. Transmission electron microscopy analysis of the grown CNTs shows that the grown CNTs are multiwalled nanotubes with a bamboo structure, and follow the base-growth mechanism.  相似文献   

10.
Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field.  相似文献   

11.
Effect of nickel,iron and cobalt on growth of aligned carbon nanotubes   总被引:8,自引:0,他引:8  
The effect of pure nickel, iron and cobalt on growth of aligned carbon nanotubes was systematically studied by plasma-enhanced hot-filament chemical vapor deposition. It is found that the catalyst has a strong effect on the nanotube diameter, growth rate, wall thickness, morphology and microstructure. Ni yields the highest growth rate, largest diameter and thickest wall, whereas Co results in the lowest growth rate, smallest diameter and thinnest wall. The carbon nanotubes catalyzed by Ni have the best alignment and the smoothest and cleanest wall surface, whereas those from Co are covered with amorphous carbon and nanoparticles on the outer surface. The carbon nanotubes produced from Ni catalyst also exhibit a reasonably good graphitization. Therefore, Ni is considered as the most suitable catalyst for growth of aligned carbon nanotubes. Received: 30 November 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

12.
Embedding of carbon nanotubes in conducting polymeric matrices for various nanocomposites material is now a popular area. In this article, a concise chemical method has been described for the preparation of homogeneous nanocomposite of multi-walled carbon nanotube (MWNT)/polyaniline (PANI) by electrochemical codeposition. For this we functionalized the MWNTs via the diazotization reaction. This helped to disperse the nanotubes in aniline. The composite films were dispersed Pt by electrodeposition technique. The presence of MWNTs and platinum in the composite films was confirmed by XRD analysis and transmission electron microscopy (TEM). Four-point probe investigations revealed that the MWNT/PANI composite films exhibited a good conductivity. Cyclic voltammograms (CV) showed that Pt-modified MWNT/PANI composite films perform higher electrocatalytic activity and better long-term stability than Pt-modified pure PANI film toward formic acid oxidation. The results imply that the MWNT/PANI composite films as a promising support material improves the electrocatalytic activity for formic acid oxidation greatly.  相似文献   

13.
Aligned carbon nanotubes were grown by plasma-enhanced hot filament chemical vapor deposition using different reaction gases and they were investigated by scanning electron microscopy and transmission electron microscopy. It is found that the hollow carbon nanotubes were formed using methane and hydrogen as the reaction gases, but the bamboo-structured carbon nanotubes were grown when ammonia was added into the reaction gases, indicating that the structure of the aligned carbon nanotubes was changed depending on different reaction gases. On setting of diffusion of carbon, the effects of the nitrogenous gas on the structure change of carbon nanotubes are studied.  相似文献   

14.
Carbon nanotubes were grown on thermally oxidized porous silicon by catalytic chemical vapor deposition from the mixture of ferrocene and xylene precursor. The growth rate of carbon nanotubes showed dependence on the oxidation extent of porous silicon. On pristine porous silicon surfaces, only poor nanotube growth was observed, whilst samples oxidized in air at 200, 400, 600 and 800 °C prior to the deposition process proved to be suitable substrates for carbon nanotube synthesis. Networks of carbon tubes with diameter of ∼40 and ∼10 nm observed on the surfaces of samples were investigated by electron microscopy and by energy dispersive X-ray analysis.  相似文献   

15.
The structural transformation of MoO3 nanobelts into MoS2 nanotubes using a simple sulfur source has been reported. This transformation has been extensively investigated using electron microscopic and spectroscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and energy-dispersive X-ray analysis (SEM-EDAX and TEM-EDX). The method described in this report will serve as a generic route for the transformation of other oxide nanostructures into the chalcogenide nanostructures.  相似文献   

16.
The effect of gas pressure on the structure of carbon nanotubes (CNTs) has been systematically investigated in the chemical vapor deposition process. The yield of CNTs (defined as the weight ratio of CNTs vs. catalyst) increases significantly with the gas pressure, reaches 600% at 600 Torr, then decreases with further increase of gas pressure. At low reacting gas pressure the CNTs have completely hollow cores, whereas at high pressure the CNTs have a bamboo structure. The density of the compartments in the bamboo-structured CNTs increases dramatically with the increase of the gas pressure. This result shows that the structure and yield of carbon nanotubes are strongly affected by the growth gas pressure. Received: 10 May 2001 / Accepted: 10 May 2001 / Published online: 20 June 2001  相似文献   

17.
Ultra‐thin, optically transparent and electrically conducting films of pure carbon nanotubes (CNTs) are widely studied thanks to their promise for broad applications. In the present work, we study and compare different deposition techniques for the production of these networks: dip‐coating, spray‐coating, vacuum filtration and electrophoretic deposition on a quartz glass using single‐walled carbon nanotubes (SWCNTs) produced by the HiPCo method. In order to optimize the networks, besides the various deposition techniques we also investigate how the optical and electrical properties vary if the networks are fabricated from different CNTs, all synthesized by the CVD method: SWCNTs, DWCNTs and MWCNTs. As the main criteria for evaluating the quality of these CNT networks we measure the electrical surface resistance at a certain optical transmittance and correlate it to the morphology (homogeneity and roughness) of the networks. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A new route to obtain metal oxide nanotubes is presented: an inorganic coordination complex precursor containing the metal ions and impregnated into alumina membrane templates yield hollow tubular nanostructures of LaNiO3 by calcination at 600 °C as characterized by powder X-ray diffraction (XRD). Scanning electron microscopy (SEM) shows that the resulting nanotubes have 200 nm in diameter in good agreement with the template pore. Transmission electron microscopy (TEM) and dark field transmission electron microscopy (DF-TEM) show that the nanotubes with 10-20 nm walls and internal separations are composed of 3-5 nm crystals.  相似文献   

19.
The effect of temperature on growth and structure of carbon nanotubes (NTs) using chemical vapor deposition (CVD) has been investigated. Iron embedded silica was used to grow NTs in large quantity at various temperatures from 600 to 1050 °C with gas pressure fixed at 0.6 and 760 Torr, respectively. The growth and structure of the NTs are strongly affected by the temperature. At low gas pressure, the NTs are completely hollow at low temperature and bamboo-like structure at high temperature. While at high gas pressure, all the NTs are bamboo-like structure regardless of temperature. The diameter of NTs increases significantly with temperature. At low gas pressure the diameter gets bigger by mainly increasing the number of graphene layers of the wall of NTs, whereas at high gas pressure the diameter gets bigger by increasing both the number of graphene layers of the wall and the inner diameter of the NTs. This result indicates that the growth temperature is crucial in synthesizing NTs with different structures. The findings here are important for realizing controlled growth of NTs for their applications in different fields. Received: 20 November 2001 / Accepted: 21 November 2001 / Published online: 4 March 2002  相似文献   

20.
Ever since the discovery of carbon nanotubes (CNTs) by Iijima in 1991, there have been extensive research efforts on their synthesis, physics, electronics, chemistry, and applications due to the fact that CNTs were predicted to have extraordinary physical, mechanical, chemical, optical, and electronic properties. Among the various forms of CNTs, single-walled and multi-walled, random and aligned, semiconducting and metallic, aligned CNTs are especially important since fundamental physics studies and many important applications will not be possible without alignment. Even though there have been significant endeavors on growing CNTs in an aligned configuration since their discovery, little success had been realized before our first report on growing individually aligned CNTs on various substrates by plasma-enhanced chemical vapor deposition (PECVD) [Science 282 (1998) 1105–1108]. Our report spearheaded a new field on growth, characterization, physics, and applications of aligned CNTs. Up to now, there have been thousands of scientific publications on synthesizing, studying, and utilizing aligned CNTs in various aspects. In this communication, we review the current status of aligned CNTs, the physics for their alignment, their applications in field emission, optical antennas, subwavelength light transmission in CNT-based nanocoax structures, nanocoax arrays for novel solar cell structures, etc.

The focus of this review is to examine various aligned CNT systems, either as an individual or as an array, either the orientation is vertical, parallel, or at other angles to the substrate horizon, either the CNT core structures are mostly hollow channels or are composed of complex compartments. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications whereas current limitations and challenges will also be discussed to lay down the foundation for future developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号