首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《Composite Interfaces》2013,20(4):425-440
This paper presents a careful theoretical investigation into interfacial stresses in damaged RC beams strengthened with externally bonded FRP plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e. the damaged concrete beam, the FRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.  相似文献   

2.
This paper presents an improved bi-material beam theory with adhesive interface and the new prestressed-fiber reinforced polymer (FRP) – model, which has been applied to the study the problem of interfacial stresses. This work explicitly considers the interfacial slip effect on the structural performance by including both the effect of adherend shear deformations and the fiber volume fraction of the prestressed laminates. This new method needs only one differential equation to determine both shear and normal interfacial stress, which is one aspect that has not been taken into account by the previous studies in the literature. A parametrical study is carried out to show the effects of some design variables, e.g., stiffness and thickness of adhesive layer and FRP plate.  相似文献   

3.
This paper reports an improved analytical solution for analysis the problem of interface stresses in functionally graded beam (FGB) strengthened with bonded hygrothermal aged composite plates. The material properties of the functionally graded beam are supposed to vary according to power law distribution of the volume fraction of the constituents through the beam thickness. The obtained results are compared with the existing solutions in the literature to verify the validity of the new analytical approach. It is found that the inhomogeneities play an important role in reducing the stress concentrations along bi-material interfaces. Finally, a parametric study was carried out to show the effects of the fiber volume fraction, the hygrothermal effect, and some design variables, e.g. thickness of adhesive layer and FRP plate on the magnitude of maximum shear and normal stress.  相似文献   

4.
This article presents a simplified three-unknown shear and normal deformations nonlocal beam theory for the bending analysis of nanobeams in thermal environment. Eringen's nonlocal constitutive equations are considered in the analysis. Governing equations are derived according to the present refined theory using Hamilton's principle. Central deflections of nanobeams under uniform and point loads are given and compared with the available ones in the literature. Additional results of displacement and stresses are presented for future comparison. The effects of nonlocality, temperature parameters, length of beam, length-to-depth ratio as well as shear and normal strains are all investigated.  相似文献   

5.
《Composite Interfaces》2013,20(1):19-40
In this paper the micro-scratch test is simulated by ANSYS finite element code for thin hard coating on substrate composite material system. Coulomb friction between indenter and material surface is considered. The material elastic-plastic properties are taken into account. Contact elements are used to simulate the frictional contact between indenter and material surfaces, as well as the frictional contact after the detachment of coating/substrate interfaces has taken place. In the case of coating/substrate interfaces being perfectly bonded, the distributions of interfacial normal stress and shear stress are obtained for the material system subjected to normal and tangential loading. In the case of considering the detachment of interfaces, the length of interfacial detachment and the redistribution of stresses because of interfacial detachments are obtained. The influences of different frictional coefficients and different indenter moving distances on the distributions of stresses and displacements are studied. In the simulation, the interfacial adhesion shear strength is considered as a main adhesion parameter of coating/substrate interfaces. The critical normal loading from scratch tests are directly related to interfacial adhesion shear strengths. Using the critical normal loading known from experiments, the interfacial adhesion shear strength is obtained from the calculation. When the interfacial adhesion shear strength is known, the critical normal loading is obtained for different coating thicknesses. The numerical results are compared with the experimental values for composite materials of thin TiN coating on stainless steel substrate.  相似文献   

6.
In this paper, a boundary element method is developed for the geometrically nonlinear response of shear deformable beams of simply or multiply connected constant cross-section, traversed by moving loads, resting on tensionless nonlinear three-parameter viscoelastic foundation, undergoing moderate large deflections under general boundary conditions. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse moving loading as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the transverse displacement, to the axial displacement and to a stress functions and solved using the Analog Equation Method, a Boundary Element based method. Application of the boundary element technique yields a system of nonlinear Differential-Algebraic Equations, which is solved using an efficient time discretization scheme, from which the transverse and axial displacements are computed. The evaluation of the shear deformation coefficient is accomplished from the aforementioned stress function using only boundary integration. Analyses are performed to illustrate, wherever possible, the accuracy of the developed method, to investigate the effects of various parameters, such as the load velocity, load frequency, shear deformation, foundation nonlinearity, damping, on the beam displacements and stress resultants and to examine how the consideration of shear and axial compression affects the response of the system.  相似文献   

7.
界面力学性能是影响石墨烯/柔性基底复合结构整体力学性能的关键因素,因此对该结构界面切应力传递机理的研究十分必要.考虑了石墨烯和基底泊松效应的影响,本文提出了二维非线性剪滞模型.对于基底泊松比相比石墨烯较大的情况,利用该模型理论研究了受单轴拉伸石墨烯/柔性基底结构的双向界面切应力传递问题.在弹性粘结阶段,导出了石墨烯双向正应变和双向界面切应力的半解析表达式,分析了不同位置处石墨烯正应变和界面切应力的分布规律.导出了石墨烯/柔性基底结构发生界面滑移的临界应变,结果表明该临界应变低于利用经典一维非线性剪滞模型得到的滑移临界应变,并且明显受到石墨烯宽度尺寸以及基底泊松比大小的影响.基于二维非线性剪滞模型建立有限元模型(FEM),研究了界面滑移阶段石墨烯双向正应变和双向界面切应力的分布规律.与一维非线性剪滞模型的结果对比表明,当石墨烯宽度较大时,二维模型和一维模型对石墨烯正应变、界面切应力以及滑移临界应变的计算结果均存在较大差别,但石墨烯宽度很小时,二维模型可近似被一维模型代替.最后,通过与拉曼实验结果的对比,验证了二维非线性剪滞模型的可靠性,并得到了石墨烯/聚对苯二甲酸乙二醇酯(PET)基底结构的界面刚度(100 TPa/m)和界面剪切强度(0.295 MPa).  相似文献   

8.
Laser beam forming has emerged as a new and very promising technique to form sheet metal by thermal residual stresses. The objective of this work is to investigate numerically the effect of rectangular beam geometries, with different transverse width to length aspect ratio, on laser bending process of thin metal sheets, which is dominated by buckling mechanism. In this paper, a comprehensive thermal and structural finite element (FE) analysis is conducted to investigate the effect that these laser beam geometries have on the process and on the final product characteristics. To achieve this, temperature distributions, deformations, plastic strains, stresses, and residual stresses produced by different beam geometries are compared. The results suggest that beam geometries play an important role in the resulting temperature distributions on the workpiece. Longer beam dimensions in the scanning direction (in relation to its lateral dimension) produce higher temperatures due to longer beam–material interaction time. This affects the bending direction and the magnitude of the bending angles. Higher temperatures produce more plastic strains and hence higher deformation. This shows that the temperature-dependent yield stress plays a more dominant role in the deformation of the plate than the spread of the beam in the transverse direction. Also, longer beams have a tendency for the scanning line to curve away from its original position to form a concave shape. This is caused by buckling which develops tensile plastic strains along both ends of the scanning path. The buckling effect produces the opposite curve profile; convex along the tranverse direction and concave along the scanning path.  相似文献   

9.
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.  相似文献   

10.
Equations of motion for curved beams in a general state of non-uniform initial stresses are derived using the principle of virtual work. The equations are adjusted to a generic expression by using appropriate transformations. The free vibration behaviours of the curved beams subjected to a combination of uniform initial tensile of compressive stresses and uniform initial bending stress are examined. The Galerkin method is employed in obtaining accurate values of free frequencies and initial buckling stresses. The curved beam is assumed to be vibrating in its plane. Natural frequencies and initial buckling stresses for hinged supported curved beams are presented for validation. Effects of arc segment angles, elastic foundation, and initial stresses on the natural frequencies are investigated. Effects of arc segment angles, elastic foundation, and initial bending stresses on the initial buckling stresses are explored in this paper.  相似文献   

11.
The dynamic analysis of flexible beams with large deformations is difficult and few studies have been performed. In this paper, the vibration analysis of several very flexible beams with large deflections using the finite element approach is studied. The examples were a cantilever beam and rotating flexible robot arms. The results were compared with the results available in the published literature. Several successful checks on the finite element results were performed to ensure the accuracy of the solutions. Due to the geometrical nonlinearity, several static equilibrium shapes can exist for large deflections of a cantilever beam for a given load. Nonlinear dynamic finite element analysis was implemented to investigate the stability of these shapes.  相似文献   

12.
D. W. Wheeler 《哲学杂志》2013,93(36):5719-5740
For a diamond-coated component, the shear stresses at the coating–substrate interface, generated by solid particle impingement, are known to affect interfacial integrity. If these stresses are of sufficient magnitude, coating-debonding caused by interfacial crack propagation can be initiated, which can later lead to catastrophic failure of the coating. This paper describes a set of experiments conducted on CVD diamond coatings at a constant particle impingement velocity (250 m/s), using sieved silica sand varying in diameter from 125 to 500 µm. The objective of this work was to examine the influence of the stress field on the integrity of the coating by varying the depth at which the maximum shear stress occurred. Detailed studies of the coating failure time with respect to the normalized depth of maximum shear stress show that particle impacts generating a maximum shear stress at, or close to, the coating–substrate interface results in rapid debonding of the coating. Coatings thick enough to contain the maximum shear stress within the coating and away from the interface exhibit the longest life when subjected to solid particle impacts. The results are also compared to other erosion studies and the differences between them are explained.  相似文献   

13.
An analytical study for free vibration of naturally curved and twisted beams with uniform cross-sectional shapes is carried out using spatial curved beam theory based on the Washizu's static model. In the governing equations of motion of the beams, all displacement functions and the generalized warping coordinate are defined at the centroid axis and also the effects of rotary inertia, transverse shear deformations and torsion-related warping are included in the proposed model. Explicit analytical expressions are derived for the vibrating mode shapes of a curved, bending-torsional-shearing coupled beam under clamped-clamped boundary condition with the help of symbolic computing package Mathematica, and a process of searching is used to determine the natural frequencies. Comparisons of the present results with the FEM results using beam elements in ANSYS code show good accuracy in computation and validity of the model. Further, the present model is used for cylindrical helical springs with circular cross-section fixed at both ends, and the results indicate that the natural frequencies agree well with the theoretical and experimental results available.  相似文献   

14.
It is proved by model measurements that, for sandwich beams constructed from two rectangular tubes and a damping layer glued between them, the following calculation methods can be applied. Static bending and shear stresses as well as deflections of simply supported beams may be calculated by Allen's formulae for sandwich beams with flexurally stiff faces. The first eigenfrequency and the loss factor can be determined by using the diagrams given in reference [1]. For the loss factors Ungar's formula gives a suitable approximation. A minimum cost design procedure is presented for a sandwich beam with constant cross-section. The unknown dimensions of the cross-section are determined which satisfy the design constraints and minimize the material costs. In a numerical example, constraints relating to the maximal dynamic stresses and deflection as well as local buckling of plate elements are considered. In the optimization the backtrack combinatorial discrete programming method is applied. A numerical comparison shows that the material costs of a sandwich beam are lower than those of a homogeneous box one.  相似文献   

15.
A method for vibration-based damage localization and quantification, based on quasi-static flexibility, is presented. The experimentally determined flexibility matrix is combined with a virtual load that causes nonzero stresses in a small part of the structure, where a possible local stiffness change is investigated. It is shown that, if the strain–stress relationship for the load is proportional, the ratio of some combination of deformations before and after a stiffness change has occurred, equals the inverse local stiffness ratio. The method is therefore called local flexibility (LF) method. Since the quasi-static flexibility matrix can be composed directly from modal parameters, the LF method allows to determine local stiffness variations directly from measured modal parameters, even if they are determined from output-only data. Although the LF method is in principle generally applicable, the emphasis in this paper is on beam structures. The method is validated with simulation examples of damaged isostatic and hyperstatic beams, and experiments involving a reinforced concrete free–free beam and a three-span prestressed concrete bridge, that are both subjected to a progressive damage test.  相似文献   

16.
《Composite Interfaces》2013,20(7):561-571
In this paper an approximate analytical method is proposed to predict the distribution of interfacial stresses in FRP–RC hybrid beams. The theoretical results are compared, and show close agreement, with other rigorous theoretical analyses. A parametrical study is carried out to show the effects of some design variables, e.g. thickness of adhesive layer, thickness of FRP plate and the distance from support to cut-off end of bonded plates.  相似文献   

17.
《Composite Interfaces》2013,20(3):275-294
Fiber nanoindentation models are developed for polymeric matrix composites with nonhomogeneous interphases. Using design of experiments, the effects of geometry, loading and material parameters on the critical parameters of the indentation test such as the load–displacement curve, the maximum interfacial shear and normal stresses are studied. The sensitivity analysis shows that the initial load–displacement curve is dependent only on the indenter type, and not on parameters such as fiber volume fraction, interphase type, thickness of interphase, and boundary conditions. The interfacial tensile radial stresses are not sensitive to indenter type, or to type and thickness of interphase, while the interfacial compressive radial stresses are sensitive mainly to boundary conditions and thickness of interphase; however, the influence of these factors on the interfacial radial stresses can be large. In contrast, the interfacial shear stress is sensitive to all factors, but the influence of the factors is relatively small.  相似文献   

18.
《Composite Interfaces》2013,20(1):17-39
The singular behaviour at the free edges of the fibre-matrix interface is analysed for the fibre push-out test geometry based on the boundary element method. The fibre push-out test has been extensively used to measure the fibre-matrix interfacial properties in polymer, ceramic and metal matrix composites. There are two free edges in the fibre push-out specimen: one is at the loaded fibre end and the other at the supported fibre end. The singular stresses can be expressed as a function of singular exponent and singular stress intensity. It is shown that the singular exponents obtained at both fibre ends are characteristic of composite constituent properties, such as Young's moduli of fibre and matrix, and does not vary with specimen dimensions. The singular exponents are real and identical for the shear and radial stress components at fibre ends where the wedge angles are the same. The singular stress intensities are also implicit in material properties, and vary with specimen dimensions, such as fibre to matrix radius ratio, fibre aspect ratio and support hole size. An interfacial failure criterion is proposed here based on the average stress concept to determine the critical singular stress intensities in mode I and mode II loads.  相似文献   

19.
This paper aims at investigating the interaction of two flexible permanent magnet beams facing each other. The governing equations of motion are obtained based on the Euler–Bernoulli beam model along with Hamilton's principle. Assuming that the beams' tips are far enough, each magnet beam is considered as a series of dipole segments and the external force and moment distributions over each beam due to the magnetic field of the other one is calculated in the deformed configuration. The transverse deflections of the beams are written as series expansions of the mode shapes of an unloaded cantilever beam and the Galerkin method is applied to determine the stability and resonance frequencies. Using the obtained model, the stability regions of the beams for both cases of opposite poles and same poles facing each other are obtained. Also the effect of magnet's strength and flexibility of the beams on the stability boundaries are illustrated.  相似文献   

20.
Hao Chen  Tomy Varghese 《Ultrasonics》2009,49(4-5):472-483
Shear stresses are always present during quasi-static strain imaging, since tissue slippage occurs along the lateral and elevational directions during an axial deformation. Shear stress components along the axial deformation axes add to the axial deformation while perpendicular components introduce both lateral and elevational rigid motion and deformation artifacts into the estimated axial and lateral strain tensor images. A clear understanding of these artifacts introduced into the normal and shear strain tensor images with shear deformations is essential. In addition, signal processing techniques for improved depiction of the strain distribution is required. In this paper, we evaluate the impact of artifacts introduced due to lateral shear deformations on the normal strain tensors estimated by varying the lateral shear angle during an axial deformation. Shear strains are quantified using the lateral shear angle during the applied deformation. Simulation and experimental validation using uniformly elastic and single inclusion phantoms were performed. Variations in the elastographic signal-to-noise and contrast-to-noise ratios for axial deformations ranging from 0% to 5%, and for lateral deformations ranging from 0 to 5° were evaluated. Our results demonstrate that the first and second principal component strain images provide higher signal-to-noise ratios of 20 dB with simulations and 10 dB under experimental conditions and contrast-to-noise ratio levels that are at least 20 dB higher when compared to the axial and lateral strain tensor images, when only lateral shear deformations are applied. For small axial deformations, the lateral shear deformations significantly reduces strain image quality, however the first principal component provides about a 1–2 dB improvement over the axial strain tensor image. Lateral shear deformations also significantly increase the noise level in the axial and lateral strain tensor images with larger axial deformations. Improved elastographic signal and contrast-to-noise ratios in the first principal component strain image are always obtained for both simulation and experimental data when compared to the corresponding axial strain tensor images in the presence of both axial and lateral shear deformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号