首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Chow R  Blindt R  Chivers R  Povey M 《Ultrasonics》2003,41(8):595-604
Two investigations of the sonocrystallisation of ice are reported for solutions in the concentration range of 0-45 wt.% sucrose. The first, carried out at 20 kHz using a commercial sonicator shows clear evidence of the stimulation of primary nucleation, by increasing the temperature at which nucleation takes place. The nucleation temperature is also increased as the ultrasonic power output level or duty cycles are increased. The second uses a novel measurement cell which permits the direct visualisation of the crystallisation and cavitation with a light microscope while different levels of alternating pressures at a frequency of 67 kHz are applied to the sample, whose heating and cooling is carefully controlled and monitored. This provides confirmation of the fragmentation of ice dendrites growing in a sucrose solution to produce smaller new ice crystals (secondary nucleation). These observations show that the primary and secondary nucleation of ice are both possible during the sonocrystallisation of ice.  相似文献   

2.
This work reports dynamic video images of the influence of ultrasonic cavitation on the sonocrystallisation of ice at a microscopic level. This has been achieved through the construction of a unique ultrasonic system for an optical microscope. The system consists of (1). an ultrasonic cold stage, (2). a temperature control system, and (3). a microscope and imaging setup. This allows the temperature of a sample to be systematically controlled while it is subjected to simultaneous excitation with alternating pressures in the ultrasonic frequency range. Both the amplitude of excitation and the frequency can be varied. Experiments on ice crystals in pure water and sucrose solutions were conducted. Three distinct phenomena were observed. Firstly, there is a tendency for cavitation bubbles to form at the grain boundaries between ice crystals. Secondly, there is a progressive melting of ice by cavitation bubbles which appear to eat their way into the ice phase. Thirdly, the dendritic ice structures may fragment under the influence of ultrasound, thus increasing the number of nuclei which may subsequently grow (secondary nucleation). These observations form the basis of a significantly enhanced understanding and exploitation of the sonocrystallisation of ice.  相似文献   

3.
Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer.  相似文献   

4.
Ultrasonic-induced nucleation of ice in water containing air bubbles   总被引:4,自引:0,他引:4  
Cavitation induced by ultrasonic vibrations can cause nucleation of ice in supercooled water. In this study, the time required for ultrasonic-induced nucleation of ice was measured for water containing two different size distributions of air bubbles. When the water was supersaturated with air bubbles, there was a time lag of about 0.5 s between the onset of ultrasonic irradiation and the onset of ice nucleation, and the probability of ice nucleation was unusually high within 0.5-1.1 s after the onset of ultrasonic irradiation. These results cannot be explained by conventional models alone, in which the collapse of a cavitation bubble triggers the nucleation of ice. Secondary effects appear to also influence ice nucleation.  相似文献   

5.
In order to clarify the mechanism of nucleation of ice induced by ultrasound, ultrasonic waves have been applied to supercooled pure water and degassed water, respectively. For each experiment, water sample is cooled at a constant cooling rate of 0.15 °C/min and the ultrasonic waves are applied from the water temperature of 0 °C until the water in a sample vessel nucleates. This nucleation temperature is measured. The use of ultrasound increased the nucleation temperature of both degassed water and pure water. However, the undercooling temperature for pure water to nucleate is less than that of degassed water. It is concluded that cavitation and fluctuations of density, energy and temperature induced by ultrasound are factors that affect the nucleation of water. Cavitation is a major factor for sonocrystallisation of ice.  相似文献   

6.
One of the main applications of ultrasonic melt treatment is the grain refinement of aluminium alloys. Among several suggested mechanisms, the fragmentation of primary intermetallics by acoustic cavitation is regarded as very efficient. However, the physical process causing this fragmentation has received little attention and is not yet well understood. In this study, we evaluate the mechanical properties of primary Al3Zr intermetallics by nano-indentation experiments and correlate those with in-situ high-speed imaging (of up to 1 Mfps) of their fragmentation process by laser-induced cavitation (single bubble) and by acoustic cavitation (cloud of bubbles) in water. Intermetallic crystals were chemically extracted from an Al-3 wt% Zr alloy matrix. Mechanical properties such as hardness, elastic modulus and fracture toughness of the extracted intermetallics were determined using a geometrically fixed Berkovich nano-diamond and cube corner indenter, under ambient temperature conditions. The studied crystals were then exposed to the two cavitation conditions mentioned. Results demonstrated for the first time that the governing fragmentation mechanism of the studied intermetallics was due to the emitted shock waves from the collapsing bubbles. The fragmentation caused by a single bubble collapse was found to be almost instantaneous. On the other hand, sono-fragmentation studies revealed that the intermetallic crystal initially underwent low cycle fatigue loading, followed by catastrophic brittle failure due to propagating shock waves. The observed fragmentation mechanism was supported by fracture mechanics and pressure measurements using a calibrated fibre optic hydrophone. Results showed that the acoustic pressures produced from shock wave emissions in the case of a single bubble collapse, and responsible for instantaneous fragmentation of the intermetallics, were in the range of 20–40 MPa. Whereas, the shock pressure generated from the acoustic cavitation cloud collapses surged up to 1.6 MPa inducing fatigue stresses within the crystal leading to eventual fragmentation.  相似文献   

7.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   

8.
The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23 kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter (“red region”), while such emissions are nearly absent close to the horn tip (“blue region”). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.  相似文献   

9.
超声空化及其声流效应在医学、化工和能源等领域得到广泛应用。本文采用高速摄像和粒子图像测速系统分别研究了超声场下的空化形态和声流场结构的时空演化规律。实验研究了50W,100W,200W和250W等四种不同输入功率对18kHz的超声变幅杆附近空化及其声流场的影响。研究结果表明:(1)在变幅杆下端面处观察到由大量空化气泡均匀分布组成的倒置锥形空泡结构,并且锥形空泡结构为稳态流动结构。(2)在超声变幅杆附近产生了两种不同的声流形式,第一种是变幅杆底端的射流型声流,第二种是变幅杆两侧的回旋流。此外,通过研究空泡与声流场中最大速度点之间的空间对应关系,发现声流是因为空泡流动带动而产生的。(3)空间位置和输入功率能显著影响射流型声流的流场结构,但是对回旋流的影响十分微弱。  相似文献   

10.
In the preceding paper (part 1), the pressure and temperature fields close to a bubble undergoing inertial acoustic cavitation were presented. It was shown that extremely high liquid water pressures but quite moderate temperatures were attained near the bubble wall just after the collapse providing the necessary conditions for ice nucleation. In this paper (part 2), the nucleation rate and the nuclei number generated by a single collapsing bubble were determined. The calculations were performed for different driving acoustic pressures, liquid ambient temperatures and bubble initial radius. An optimal acoustic pressure range and a nucleation temperature threshold as function of bubble radius were determined. The capability of moderate power ultrasound to trigger ice nucleation at low undercooling level and for a wide distribution of bubble sizes has thus been assessed on the theoretical ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号