首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We investigate the Gauss–Bonnet black hole in five dimensional anti-de Sitter spacetimes (GBAdS). We analyze all thermodynamic quantities of the GBAdS, which is characterized by the Gauss–Bonnet coupling c and mass M, comparing with those of the Born–Infeld-AdS (BIAdS), Reissner–Norstr?m-AdS black holes (RNAdS), Schwarzschild-AdS (SAdS), and BTZ black holes. For c<0 we cannot obtain the black hole with positively definite thermodynamic quantities of mass, temperature, and entropy, because the entropy does not satisfy the area law. On the other hand, for c>0, we find the BIAdS-like black hole, showing that the coupling c plays the role of a pseudo-charge. Importantly, we could not obtain the SAdS in the limit of c→0, which means that the GBAdS is basically different from the SAdS. In addition, we clarify the connections between thermodynamic and dynamical stability. Finally, we also conjecture that if a black hole is big and thus globally stable, its quasi-normal modes may take on analytic expressions.  相似文献   

2.
We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient α2<0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k=-1, the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k=1, we found that the black hole has an intermediate unstable phase for D=7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient \tilde{\alpha} is under a critical value.For D≧ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient \tilde{\alpha} is under a critical value for D=8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with flat horizon do not depend on the Lovelock coefficients and are the same as those of black holes in general gravity.  相似文献   

3.
Recently it is shown that the Bekenstein–Hawking entropy for black holes receives logarithmic corrections due to thermodynamic fluctuations. Schwarzschild black hole which possesses a negative specific heat is thermodynamically unstable, so the entropy corrections cannot be obtained directly. In this Letter, Schwarzschild black hole will be put in the center of a spherical cavity of finite radius to achieve equilibrium with surroundings, so that a thermodynamically stable solution is obtained based on a uniformly spaced area spectrum approach. Our conclusion show that there are two correction terms for Schwarzschild black holes. The sign of the second correction term depends on the size of the cavity.  相似文献   

4.
We study the thermodynamic stabilities of uncharged and charged black holes surrounded by quintessence (BHQ) by means of effective thermodynamic quantities. When the state parameter of quintessence \(\omega _q\) is appropriately chosen, the structures of BHQ are something like that of black holes in de Sitter space. Constructing the effective first law of thermodynamics in two different ways, we can derive the effective thermodynamic quantities of BHQ. Especially, these effective thermodynamic quantities also satisfy Smarr-like formulae. It is found that the uncharged BHQ is always thermodynamically unstable due to negative heat capacity, while for the charged BHQ there are phase transitions of the second order. We also show that there are several differences on the thermodynamic properties and critical behaviors of BHQ between the two ways we employed.  相似文献   

5.
6.
In this paper, we first obtain the higher-dimen-sional dilaton–Lifshitz black hole solutions in the presence of Born–Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of \(z=n+1\) and \(z\ne n+1\) where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking–Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau–Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case \( z\ge 2\). For \(z<2\), it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while for large black holes, the correlation is very small. Finally, we study the Ruppeiner geometry and thermal stability of BI charged Lifshtiz black holes for different values of z. We observe that small black holes are thermally unstable in some situations. Also, the behavior of the correlation between possible black hole molecules for large black holes is the same as for the linearly charged case. In both the linearly and the BI charged cases, for some choices of the parameters, the black hole system behaves like a Van der Waals gas near the transition point.  相似文献   

7.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein-Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Verlinde formula is derived. In our calculation, Bekenstein-Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.  相似文献   

8.
This paper deals in the thermodynamic properties of Einstein-Gauss-Bonnet and Einstein-Yang-Mills-Gauss-Bonnet black holes. It exhibits the various stable and unstable phases of the black holes in these two modified gravity theories. In the first section, that reveals the various aspects of Einstein-Gauss-Bonnet black holes, we chose to study the changes in the Hawking Temperature with variations in the radius of event horizon (r) and charge (Q); and tried to justify them physically. Secondly in case of Einstein-Yang-Mills-Gauss-Bonnet black holes, we have attempted to compare the changes in the various thermodynamic parameters with varying r and Q; with the Einstein-Gauss-Bonnet black holes at a macroscopic level. Here we have considered the Yang Mills tensor, electromagnetic Lagrangian added to the action integrand. Again this very work deals in drawing out the similarities between these two types of black holes, thereby throwing some light on the aspect of black hole stability. Later we have also introspected the effects of the Gauss-Bonnet coupling parameter α, whose function (6αr), is added as a correction term to the black hole entropy. We have especially focused on what changes does it have upon the nature of the plots as to whether it enhances or reduces the effect of Q on the behavior of the curves. Finally this paper has also kept an eye at estimating the stability domains of the black holes described in these two gravity theories.  相似文献   

9.
In this paper, we visit the thermodynamic criticality and thermodynamic curvature of the charged AdS black hole in a new phase space. It is shown that when the square of the total charge of the charged black hole is considered as a thermodynamic quantity, the charged AdS black hole also admits a van der Waals-type critical behavior without the help of thermodynamic pressure and thermodynamic volume. Based on this, we study the fine phase structures of the charged AdS black hole with fixed AdS background in the new framework. On the one hand, we give the phase diagram structures of the charged AdS black hole accurately and analytically, which fills up the gap in dealing with the phase transition of the charged AdS black holes by taking the square of the charge as a thermodynamic quantity. On the other hand, we analyse the thermodynamic curvature of the black hole in two coordinate spaces. The thermodynamic curvatures obtained in two different coordinate spaces are equivalent to each other and are also positive. Based on an empirical conclusion under the framework of thermodynamic geometry, we speculate that when the square of charge is treated as an independent thermodynamic quantity, the charged AdS black hole is likely to present a repulsive between its molecules. More importantly, based on the thermodynamic curvature, we obtain a universal exponent at the critical point of phase transition.  相似文献   

10.
Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner–Nordström black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner–Nordströ m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincaré stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers.  相似文献   

11.
12.
Motivated by providing preliminary steps to understand the conception of quantum gravity, in this paper, we study the phase structure of a semiclassical gravitational system. We investigate the stability conditions and phase transition of charged black holes in massive gravity via canonical ensemble and geometrical thermodynamic approaches. We point out the effects of massive parameter on stability conditions of these black holes and show how massive coefficients affect the phase transition points of these black holes. We also study the effects of boundary topology on thermodynamical behavior of the system. In addition, we give some arguments regarding the role of higher dimensions and highlight the effect of the electric charge in thermodynamical behavior. Then, we extend our study to geometrical thermodynamic approach and show that it can be a successful method for studying the black hole phase transition. At last, by employing the relation between thermodynamical pressure and cosmological constant, critical behavior of the system and the effects of different parameters on critical values are investigated.  相似文献   

13.
We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the A term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole. and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.  相似文献   

14.
We study the effect of electromagnetic radiation on the condensate of a Bose gas. In an earlier paper we considered the problem for two simple models showing the cooperative effect between Bose–Einstein condensation and superradiance. In this paper we formalize the model suggested by Ketterle et al. in which the Bose condensate particles have a two level structure. We present a soluble microscopic Dicke type model describing a thermodynamically stable system. We find the equilibrium states of the system and compute the thermodynamic functions giving explicit formulæ expressing the cooperative effect between Bose–Einstein condensation and superradiance.  相似文献   

15.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

16.
In this paper, we study the effects of thermal fluctuations on Dyadosphere of Reissner-Nordström, Janis-Newman-Winicour and the fragmentation of f(R) global monopole black holes. In the presence of these fluctuations, we obtain various thermodynamic quantities like pressure, entropy, specific heat, Canonical and Grand Canonical ensembles. We discuss the stability of these black holes using the γ (the ratio of heat capacities). We also discuss the phase transition and range of local and global stability. It is demonstrated that in Dyadoshpere of Reissner-Nordström, Janis-Newman-Winicour and fragmentation of f(R) global monopole black holes become locally and globally stable due to logarithmic correction term and large horizon radius.  相似文献   

17.
We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordstr?m solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.  相似文献   

18.
From solving the equations of the motion for a system of Einstein gravity coupled to a non-linear electromagnetic field in the dS spacetime with two integral constants, we derived a static and spherical symmetric non-linear magnetic-charged black hole. It is indicated that this black hole solution behaves like a dS geometry in the short-distance regime. And, thus this black hole is regular. The structure of the black hole horizons is studied in detail. Also, we investigated the thermodynamics and the thermal phase transition of the black hole in both the local and global views. By observing the discontinuous change of the specific heat sign and the swallowtail structure of the free energy, we showed that the black hole can undergo a thermal phase transition between a thermodynamically unstable phase and a thermodynamically stable phase.  相似文献   

19.
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariant metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points.  相似文献   

20.
Black hole thermodynamics, confined to the semi-classical regime, cannot address the thermodynamic stability of a black hole in flat space. Here we show that inclusion of a correction beyond the semi-classical approximation makes a black hole thermodynamically stable. This stability is reached through a phase transition. By using Ehrenfest’s scheme we further prove that this is a glassy phase transition with a Prigogine–Defay ratio close to 3. This value is well within the desired bound (2 to 5) for a glassy phase transition. Thus our analysis indicates a very close connection between the phase transition phenomena of a black hole and glass forming systems. Finally, we discuss the robustness of our results by considering different normalisations for the correction term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号