首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon dots (CDs), as an emerging fluorescent nanomaterial with low toxicity, has been widely applied in various bio‐related fields. However, investigations on their capabilities in guiding osteogenic differentiation are rarely seen, which has great significance in osteoporosis therapy and bone regeneration. Herein, for the first time, a new kind of Mg2+‐doped CDs is facilely synthesized through a one‐step hydrothermal method from metal gluconate salts. The CDs can serve as nanocarrier of Mg2+ ions entering into cells, and the bioessential metal ions subsequently stimulate osteoblastic differentiation by improving alkaline phosphatase (ALP) activity and upregulation related mRNA expression. Noteworthy, the raw material has almost negligible performance on osteoblastic differentiation compared to Mg‐CDs, which is due to the ultrasmall sizes of CDs and the efficient uptake by cells. Moreover, benefitting from the fluorescence properties, Mg‐CDs can also be applied as cell labeling agents. This work proposes a new strategy to synthesize multifunctional metal ion‐doped CDs, which might had great potential in serving as promising nanodrugs for bone loss therapy.  相似文献   

2.
We describe the simple fabrication of SiO2 sol-gel monoliths embedding highly luminescent carbon nanodots (CDs) sensitive to metal ions. The pristine CDs we synthesize display an intense dual emission consisting in two fluorescence bands in the green and violet region, and we demonstrate that this photoluminescence is substantially unchanged when the dots are incorporated in the SiO2 matrix. The emission of these CDs is quenched by interactions with Cu2+ ions, which can be used to detect these ions with a detection limit of 1 μM. The chromophores remain accessible to diffusing Cu2+ ions even after embedding CDs in the sol-gel monolith, where their detection capabilities are preserved. Such a result provides the proof-of-principle of a new sensing scheme, where CDs are exploited as active sensing centers of metal transition ions within a solid-state device. The different interaction mechanisms of CDs with copper, in liquid and solid phase, are analyzed in detail and discussed in terms of different accessibility of their chromophores when the dots are incorporated in the SiO2 matrix.  相似文献   

3.
碳量子点作为碳纳米材料中的新成员,具有较高的光学稳定性、低毒性、良好水溶性、原料来源广泛、制备方法多样等多种优点,在分析检测、生物标记、光催化降解以及环境监测等领域具有广泛的应用前景, 对碳量子点的研究引起了国内外学者极大兴趣。水中Fe3+含量的超标会对生活饮用和工业生产造成一定的危害,所以准确快速地检测水中Fe3+的含量,对人体健康具有重要的意义。目前,对Fe3+进行检测的方法有伏安法、荧光光谱法、电化学法以及火焰原子吸收光谱法等,其中荧光光谱法具有快速响应和方法简便的特点,比其他方法更有优势。以柿子叶为碳源,采用水热法制备了发蓝绿色荧光的碳量子点,通过X射线衍射、高分辨透射电子显微镜、傅里叶变换红外光谱、紫外-可见吸收光谱及荧光光谱等技术对碳量子点的结构、微观形态和光谱学性质进行了详细表征。柿子叶制备的碳量子点呈现为分散均匀的球形颗粒,颗粒平均直径大约5.9 nm,碳量子点颗粒表面具有丰富的含氧官能团,在277 nm有明显的紫外吸收,可归因于C═O的n→π*跃迁。碳量子点的发射波长和荧光强度具有明显的激发依赖性,在410 nm光激发下,发射波长峰值为498 nm且荧光峰最强,荧光寿命为4.59 ns。采用多种金属离子对柿子叶制备的碳量子点在荧光传感方面进行了探究,分析发现该碳量子点对金属Fe3+具有极高的选择性,可作为荧光探针检测水中微量的Fe3+含量,其荧光猝灭率F0/F与金属Fe3+浓度在1~120 μmol·L-1范围内呈现良好的线性关系(R2 = 0.992),猝灭常数和最低检出限分别为8.84×103 L·mol-1和0.21 μmol·L-1,最低检出限数值明显小于最近一些文献的报导结果。该工作提供了一种原料天然、操作简单、成本低廉的制备工艺,开发了荧光检测水中微量金属铁离子的新方法。  相似文献   

4.
以壳聚糖为碳源通过水热法合成碳点,对影响碳点荧光强度的水热温度、水热时间和壳聚糖质量分数进行考察。通过紫外分光光度计、荧光分光光度计、原子力显微、Fourier红外光谱仪、X-ray光电子能谱、X射线衍射仪对壳聚糖碳点的光学性质、化学结构、晶体结构、形貌结构等进行表征分析。结果表明,在水热温度200℃、水热时间9 h、壳聚糖质量分数2%的条件下制备得到的壳聚糖碳点量子产率为32.86%。碳点呈现出主要尺寸为3~10 nm的球形颗粒状,且在波长335 nm激发下,发射峰位于410 nm(蓝)。对金属离子的选择性研究分析表明,Fe~(3+)对碳点溶液的荧光猝灭效应最显著,说明碳点对Fe~(3+)具有较好敏感性和高选择性,且荧光猝灭效率对Fe~(3+)浓度在0~100μmol/L范围内呈现线性响应,因此有望将碳点作为荧光探针应用于Fe~(3+)的检测表征。  相似文献   

5.

For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.

  相似文献   

6.
Novel fluorescent carbon dots (CDs) for cobalt ions sensing were synthesized from 2,4,6-tris(2′-pyridyl)-s-triazine (TPTZ) and citric acid by microwave-assisted method in one pot. This sensor was water soluble, simple, sensitive and cheap. The size of the CDs was determined from transmission electron microscope image and was in the range of 10 nm. Under optimized experimental conditions, this luminescent system had stable response for Co (II) over a concentration range from 0.4 to 50 µM with a detection limit as low as 230 nM. The proposed method showed good sensitivity and selectivity with respect to interference ions. Finally, this system was used for Co (II) determination in tap water, river water and mineral water and B12 ampoule samples.  相似文献   

7.
Carbon dots (CDs) are emerging photoluminescent materials with excellent optical properties. However, the lack of active sites in primitive CDs has limited their development applications. Herein, functionalized carbon dots (Z-CDs) are successfully prepared by surface modification of CDs with mono (6-amino-6-deoxy) cyclodextrin (β-CD). The introduction of β-CD increases the spatial potential resistance between CDs, which effectively reduces the self-quenching effect. Moreover, the conjugated domains of Z-CDs are expanded, which improves the optical properties with a quantum yield of 48.74%. Z-CDs are able to be used in the sequential detection of morin and Al3+, and the fluorescence mechanisms are confirmed to be internal filtration effect and fluorescence resonance energy transfer, respectively. The limits of detection are 0.817 and 0.231 × 10−6 m . This study not only provides an idea to solve the problem of self-quenching of CDs but also enriches the detection means of flavonoids and ions, which is expected to be applied to biosensing and environmental monitoring.  相似文献   

8.
滕潇  周奕华  钱俊  邓亚峰  高文宇 《发光学报》2018,39(9):1246-1251
以乙二醇和丙三醇为碳源,用一元醇(异丙醇和乙醇)为对比,通过溶剂热法制备得到碳点。通过傅里叶红外光谱、紫外-可见吸收光谱和激发光谱对所制得的碳点进行表征和分析,探讨了不同碳源对碳点的表面官能团、荧光性能等的影响,从而分析其荧光的发光机理。结果表明:乙二醇与丙三醇制备的碳点含有C=C键和C=O键,均在365 nm光激发后在450 nm处有荧光峰;而一元醇是由C-OH基团中的孤对电子产生荧光,碳源分子中羟基含量对碳点的荧光性能有很大影响,羟基含量越高,越容易形成双键结构。  相似文献   

9.
Carbon dots (CDs) are a new class of materials which have been extensively studied due to their unique optical properties, low toxicity, and abundance of raw materials to synthesize them. In this minireview, it is highlighted that the stability of the optical properties of CDs is an important aspect that has received very little attention. While CDs are usually considered to be photostable, several recent reports show they are prone to photobleaching. Studies of blinking, photobleaching, and photoswitching of CDs are reviewed here. It is noted that there is a lack of systematic studies about the photostability of CDs, and efforts are needed to further study this aspect. Furthermore, it is observed that the stability of CDs is somewhat related to their photoluminescence quantum yield, excitation dependence of PL emission, precursor, and synthesis method used to produce CDs.  相似文献   

10.
《中国物理 B》2021,30(9):97802-097802
In citric acid-based carbon dots, molecular fluorophore contributes greatly to the fluorescence emission. In this paper,the nitrogen and sulfur co-doped carbon dots(N,S-CDs) were prepared, and an independent sulfur source is selected to achieve the doping controllability. The influence of sulfur doping on the molecular fluorophore was systematically studied.The introduction of sulfur atoms may promote the formation of molecular fluorophore due to the increased nitrogen content in CDs. The addition surface states containing sulfur were produced, and S element exists as –SO_3, and –SO_4 groups.Appreciate ratio of nitrogen and sulfur sources can improve the fluorescence emission. The photoluminescence quantum yields(PLQY) is increased from 56.4% of the single N-doping CDs to 63.4% of double-doping CDs, which ascribes to the synergistic effect of molecular fluorophores and surface states. The sensitivity of fluorescence to p H response and various metal ions was also explored.  相似文献   

11.
荧光碳点具有激发波长依赖的独特性质,有望基于此制备检测溶液pH值的荧光探针。以柠檬酸和尿素为原料、N,N-二甲基甲酰胺为溶剂,采用一步溶剂热法在200℃下保温12 h制备了一种新型的具有橙-绿双波段荧光发射性能的水溶性碳点。采用透射电子显微镜、X射线衍射、拉曼光谱、傅里叶变换红外光谱和X射线光电子能谱等方法对荧光碳点的组成和形貌进行了表征,还通过荧光发射光谱和紫外-可见吸收光谱对其光学性能进行了研究。结果表明,制备的碳点粒径为2.7~4.3 nm,表面带有大量含氧官能团,具有良好的水分散性。在440 nm和540 nm波长光激发下分别呈现绿色(500 nm)和橙色(590 nm)双波段荧光发射。合成的荧光碳点发光性能对pH值具有敏感性:在强碱性溶液中,590 nm的荧光强度比水溶液中提高了6.71倍,同时吸收峰的蓝移使得自然光下其溶液颜色发生了明显改变,具有强碱性指示剂的作用;在pH值为2~6的酸性溶液中,500 nm与590 nm发光峰强度比与pH值之间呈现良好的线性关系,展现了作为pH值比率荧光探针的应用潜力。  相似文献   

12.
将荧光碳点引入透明斑马鱼胚胎中,研究了荧光碳点在斑马鱼中的活体成像和对斑马鱼的毒副作用。通过对水中添加荧光碳纳米颗粒,从形态上观察其对于斑马鱼个体发育的生物学效应,实时观察其在斑马鱼体内富集代谢的情况,为荧光碳点及其复合物在生物活体成像方面的研究应用奠定基础。结果表明,荧光碳点对斑马鱼生长发育无明显的毒副作用,不会导致胚胎发育异常(通过观察尾巴弯曲情况、色素深浅、血管发育速度、鱼鳔发育速度来确定对胚胎发育的影响),并且对斑马鱼无明显致死现象。荧光碳点进入斑马鱼体内的时间非常迅速,并且可以在48 h之内经代谢排出体外。  相似文献   

13.
Vortex matter in Bi(2)Sr(2)CaCu(2)O(8) with a low concentration of tilted columnar defects (CDs) was studied using magneto-optical measurements and molecular dynamics simulations. It is found that while the dynamic properties are significantly affected by tilting the magnetic field away from the CDs, the thermodynamic transitions are angle independent. The simulations indicate that vortex pancakes remain localized on the CDs even at large tilting angles. This preserves the vortex thermodynamics, while vortex pinning is considerably weakened due to kink sliding.  相似文献   

14.
Multicolor carbon dots (CDs) as an emerging subclass of carbonaceous nanomaterials have inspired intensive attention due to the fascinating fluorogenic properties of quantum dots, exhibiting great potential applications in the biomedical field. In some cases, reported CDs with blue or green fluorescence are not desirable for further biological applications owing to the conflicting background autofluorescence, low penetration, and relatively large damage to biological tissue. However, multicolor CDs that can work in the longer wavelength region are being developed to address this issue by overcoming the autofluorescence from the cellular components (usually in the blue and green range). In this review, the development of multicolor CDs is described comprehensively, including for red-emissive or NIR-emissive CDs. Additionally, the preparation methods of multicolor CDs are summarized. Moreover, the factors affecting the luminescence of multicolor CDs are discussed in detail, and the biomedical applications are emphasized from multiple perspectives.  相似文献   

15.
Using coal pitch as the carbon source to synthesize carbon dots (CDs), one of the most promising photoluminescence (PL) materials, can play an important role in the global demand for carbon neutralization. However, the reported CDs derived from coal pitch are mainly limited blue emission. Here, a new route to synthesize yellow-emissive CDs from coal pitch is developed by extracting the lightweight aromatic compounds from coal pitch and solvothermally treating the extracts in dichloromethane in the presence of a small amount of nitric acid and sulfuric acid. Notably, the obtained CDs exhibit excitation independent yellow emission, large Stokes shift and good photostability. The application of the CDs for luminescent solar concentrators (LSCs) is evaluated. It is found that the CDs can be well dispersed in polymethyl methacrylate (PMMA) matrix and fabricated transparent LSCs. The synthesized LSC (4 × 4 × 0.2 cm3) with the optimal CDs concentration exhibits an optical conversion efficiency (ηopt) of 3.31% and power conversion efficiency (ηPCE) of 1.95% under simulated sun light illumination (100 mW cm−2). This research offers a new strategy to synthesize new kind of CDs with desired performance by exploiting the native chemistries of coal pitch.  相似文献   

16.
With their unique optical and electronic properties, carbon dots (CDs) are showing great momentum in many fields such as biosensing, imaging, drug delivery, and photocatalysis. Due to their efficient light harvesting, extraordinary upconversion photoluminescence, and excellent photoinduced electron transfer capabilities, the combination of CDs with photocatalytic materials will promote light absorption resulting in increased generation of electron-hole pairs and faster photogenerated electron transfer, effectively suppressing the rate of electron-hole pair complexation and thus improving photocatalytic activity. In this paper, the mechanism of CDs photocatalysis and various photocatalytic materials such as TiO2, Bi-based, CdS, and g-C3N4 complexed with CDs are reviewed. It is hoped that research into CDs in the field of photocatalysis will be advanced and that CDs will be used more widely in environmental and energy applications.  相似文献   

17.
In this work, highly luminescent carbon dots (CDs) were synthesized by the hydrothermal method at 170 °C for 12 h using pasteurized milk as a carbon source. The prepared CDs exhibited bright blue fluorescence under UV light illumination at 365 nm. The CDs show fluorescence life time of ~4.89 ns at excitation wavelength of 370 nm. The effect of different solvents on the fluorescence property of CDs was also investigated. The lisinopril (Lis)-loaded CDs were fabricated by self-assembly of lisinopril on the surfaces of CDs, which were characterized by UV-visible and FT-IR spectroscopic techniques. The controlled release of lisinopril from the Lis-CDs was realized at pH values of 5.2, 6.2 and 7.4, respectively. The results of the cytotoxicity and confocal laser scanning microscopic images indicate that the Lis-CDs were successfully uptaken by HeLa cells without apparent cytotoxicity. The synthesized CDs show great potential as drug vehicles with good biocompatibility, sustained release of lisinopril from CDs, indicating that the CDs can act as a promising drug delivery system for therapeutic delivery and/or bioimaging applications.  相似文献   

18.
The ability to precisely sense physiological pH changes in the cellular environment is exceedingly difficult. Novel technologies are thus required to address this challenge. Fluorescent nanomaterials can be exploited to this effect because their optical properties can exhibit strong pH dependence. Herein, an intracellular pH-sensing probe is developed via a facile microwave-reaction synthesis method for the preparation of carbon dots (CDs) using glutathione and formamide. The CDs possess unique optical properties allowing for concomitant fluorescence in the blue and red regions of the spectrum. These dots are investigated as pH-sensors using the red fluorescence signatures at 650 and 680 nm. The two fluorescence bands respond differently following pH changes in their environment and could thus be used for ratiometric measurements. Cytotoxicity studies of the CDs in glioblastoma cells show no decrease in cell viability up to 100 μg mL−1 (24 h). Fluorescence imaging reveals that the dots localize in lysosomal compartments. Moreover, they can sense changes in lysosomal pH in response to serum and amino acid starvation, as well as administration of diclofenac and metformin, drugs currently in clinical trials for combination treatments of cancer. These CDs offer a new self-referencing approach for live intracellular pH sensing in 2D- and 3D-cell models.  相似文献   

19.
Study of corrosion phenomena associated with the use of molten salts as coolants raised interest in the behaviour of various metal ions in such melts. Gruen & McBeth1, in the early sixties, studied various transition metal ions in LiCl/KCl eutectic. The purpose of the present letter is an attempt to correlate ESR data with data derived from optical spectroscopy, in particular with respect to the equilibrium between hexa- and tetra-coördinate species of Ti(III) with chlorine ions.  相似文献   

20.
通过构建碳点(CDs,供体)和曙红B(EB,受体)间的荧光共振能量转移(FRET)体系,建立了一种灵敏且具有选择性的检测培氟沙星(PEFL)含量的新方法。以紫叶草为碳源,采用热解法制备了荧光碳点(CDs),其在水中分散性较好、稳定性较高、量子产率为3.7%。利用高分辨电子显微镜(HRTEM)、X射线电子衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)等手段对碳点进行了形貌和结构表征,结果表明,所制得的碳点为无定形态,其表面含有羟基(-OH)和羧基(-COOH)等活性基团。利用能量转移Frster理论,确定CDs和EB之间发生了荧光共振能量转移,从而在CDs和EB之间构建了荧光共振能量转移体系。并考察了影响荧光共振能量转移效应测定培氟沙星的重要因素,如反应介质和酸度、反应时间、供体和受体的浓度和盐效应等。结果表明,在pH 3.0的磷酸盐(PBS)缓冲溶液中,以340 nm为激发波长,碳点将能量转移给曙红B,使得曙红B的荧光信号增强。加入培氟沙星之后,由于培氟沙星与碳点之间相互作用,从而使得碳点的荧光显著增强。并且在优化的实验条件下,培氟沙星的浓度在0.0168~6.71 μg·mL-1范围内与体系的荧光强度改变值(ΔF)之间有较好的线性关系,检出限为0.072 5 ng·mL-1(3s/k,n=11)。一些常见的阳离子(如Fe3+,Al3+,Ca2+,Zn2+,Cr3+,Co2+,Cu2+,Mn2+等)、阴离子(如Cl-,NO-3,I-,S2-,SCN-,SO2-4,Br-,NO-2,IO-3,F-,ClO-3,SO2-3等)和药物(异烟肼,抗坏血酸和肝素钠)及三聚氰胺均不影响培氟沙星含量的测定。将该方法用于甲磺酸培氟沙星胶囊和片剂中PEFL含量的测定,回收率为100.4%~105.1%,相对标准偏差(RSD,n=5)均不大于2.5%,表明该方法可用于甲磺酸培氟沙星药物中培氟沙星的实际检测。该方法具有灵敏度高、选择性好等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号