首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

2.
Heavily doped Zn1−xMnxO (x = 0.3) films were prepared by polymeric precursor method onto glass substrates and their structural, morphological, optical and magnetic properties carefully studied. Undoped ZnO films were also prepared for the purpose of comparison. The polymeric precursor method consists in preparing a coating solution from the Pechini process followed by a three-step thermal treatment of the as deposited films at temperatures up to 550 °C for 30 min. X-ray diffraction (XRD) analysis reveals the typical hexagonal wurtzite structure of the undoped ZnO film. The addition of Mn ions leads to a dramatic reduction of the crystalline quality of film although no evidence of affectation by secondary phases is found. The affectation of the ZnO structure may be due to the formation of Mn clusters and generation of defects such as vacancies and interstitials. Here, the solubility limit of the Mn ions in ZnO should play an important role and it is discussed in the framework of ionic radius and valence states. The scanning electron microscopy (SEM) analysis shows that the surface of the doped sample was affected by the presence of cracks due, probably, to the expansion of the lattice constant of Zn0.7Mn0.3O caused by the Mn incorporation in the ZnO lattice. The existence of cluster-type structures on the surface is corroborated by atomic force microscopy (AFM). The EDX analysis, carried out on some areas in the film, yielded Mn/Zn ratios of about 0.3, which points out to an effective Mn incorporation in the film. On the other hand, the absorption edge of the doped films is red shifted to 2.9 eV (3.24 eV for undoped ZnO film) and the absorption edge is less sharp due, probably, to amorphous states appearing in the band gap. No evidence of dilute magnetic semiconductor mean-field ferromagnetic behavior is observed. The temperature dependence of the magnetization follows a Curie law suggesting pure paramagnetic behavior. The very small s-shape behavior of M versus H (without hysteresis) observed at room temperature on selected areas would stem from Mn clusters which are easily formed in transition metal doped ZnO.  相似文献   

3.
We report on the defects related room temperature ferromagnetic characteristics of Zn0.95-xMnxLi0.05O (x = 0.01, 0.03, 0.05 and 0.08) thin films grown on glass substrates using reactive magnetron sputtering. By increasing the Mn content, the films exhibited increases in the c-axis lattice constant, fundamental band gap energy, coercive field and remanent magnetization. Comparison of the structural and magnetic properties of the as-deposited and annealed films indicates that the hole carriers, together with defects concentrations, play an important role in the ferromagnetic origin of Mn and Li co-doped ZnO thin films. The ferromagnetism in films can be described by bound magnetic polaron models with respect to defect-bound carriers.  相似文献   

4.
Uniform and transparent thin films of Zn1−xMnxO (0?x?0.10) were fabricated by a sol-gel spin coating method. XRD results indicated the hexagonal structure of ZnO as the primary phase at all concentrations (x) of Mn. However, at x?0.035, Mn3O4 (tetragonal) is observed as the secondary phase, which was confirmed by selected-area electron diffraction patterns. SEM and TEM results showed a tendency of grains to arrange into wire-shaped morphologies, leading to elongated needle-like structures at high Mn addition. Increasing Mn content in the range 0?x?0.10 led to quenching of photoluminescence, increase in the band gap (Eg) from 3.27 to 3.33 eV, and increase in film thickness, refractive index and extinction coefficient of Zn1−xMnxO thin films. The residual stress evaluated was compressive in all cases and found to increase by an order of magnitude with addition of Mn. Furthermore, an overall increase in microhardness and yield strength of Zn1−xMnxO thin films at higher Mn concentrations is attributed to change in microstructures, presence of secondary phase and increase in film thickness.  相似文献   

5.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

6.
In this work we report on the properties of ZnO and Zn1−xCdxO films formed on top of CdTe and CdZnTe single crystals. The films have been obtained by thermal evaporation of Zn metal films and further oxidation in atmospheric conditions. The structural and compositional characteristics of the films have been analysed by means of scanning electron microscopy and energy-dispersive X-ray analysis. The chemical composition of the films as a function of growth parameters has been obtained. It has been possible to demonstrate by Raman spectroscopy the formation of both ZnO and Zn1−xCdxO films. The possible inter-diffusion effects between the films and the substrate, derived from the oxidation process, have been discussed. It has been possible to check by means of photoluminescence, the optical quality of the ZnO and Zn1−xCdxO films, also regarding to the presence of local changes. Differences between the optical spectra obtained from various ZnO films grown on top of CdTe and CdZnTe substrates enabled the determination of compositional differences introduced by the substrate when the deposition parameters are modified.  相似文献   

7.
In this work, Ni-doped ZnO (Zn1−xNixO, x=0, 0.03, 0.06, 0.11) films were prepared using magnetron sputtering. X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), temperature dependence electrical resistance, Hall and magnetic measurements were utilized in order to study the properties of the Ni-doped ZnO films. XRD and XAS results indicate that all the samples have a ZnO wurtzite structure and Ni atoms incorporated into ZnO host matrix without forming any secondary phase. The Hall and electrical resistance measurements revealed that the resistivity increased by Ni doping, and all the Ni-doped ZnO films exhibited n-type semiconducting behavior. The magnetic measurements showed that for the samples with x=0.06 and 0.11 are room-temperature ferromagnetic having a saturation magnetization of 0.33 and 0.39 μB/Ni, respectively. The bound-magnetic-polaron mediated exchange is proposed to be the possible mechanism for the room-temperature ferromagnetism in this work.  相似文献   

8.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

9.
In this study, (ZnO)x(CdO)1?x films were prepared by ultrasonic spray pyrolysis (USP) technique at a substrate temperature of 400 °C. X-ray diffraction patterns of the films indicate that the (ZnO)x(CdO)1?x films have hexagonal wurtzite and cubic structure for the constituent materials. A decrease in the average transmission with increasing quantity of the cadmium acetate dehydrate in the sprayed solution was observed. The photoconductivity transients were performed using UV light, which has 360 nm wavelength. After light cut off, conductivity changed slowly, and the decay time was thousands of seconds. The films with x=0.2 and 0 exhibited negative photoconductivity. Temperature-dependent photoconductivity and dark conductivity measurements were performed and negative photoconductivity was also observed for the same films (x=0.2 and 0). Photoluminescence measurements were performed and band-to-band excitation energies of (ZnO)x(CdO)1?x films were determined. Band gap of the pure CdO film was found as 3.11 eV, interestingly.  相似文献   

10.
Nanocrystalline Zn1−xMnxO(x=0−0.1) powders are prepared by polymeric precursor method and their structural and magnetic properties carefully studied. X-ray diffraction studies and Raman spectroscopy reveal that Mn2+ ions have substituted the Zn2+ ion without changing the würtzite structure of pristine ZnO up to Mn concentrations x≤0.05. The presence of a secondary phase, related to the solubility of Mn in ZnO is evident for higher Mn-doping concentrations. The negative value obtained for the Curie–Weiss temperature indicates that the interactions between the Mn ions are predominantly antiferromagnetic. Thus, no bulk ferromagnetism is evident in any of the studied samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号