首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
V2O5-loaded Al2O3 layers were successfully grown via micro-arc oxidation (MAO) process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). It was found that the composite layers had a porous structure with a rough surface which is suitable for catalytic applications. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS) techniques were also employed to study phase structure and chemical composition of the composite layers. The layers consisted of γ-alumina, α-alumina, and vanadium pentoxide phases in which their relative contents varied with the applied voltage. Meanwhile, optical properties of the composite layers were investigated using UV-vis spectrophotometry technique, and the band gap energy was calculated as 3.15 eV. Furthermore, photocatalytic performance of the synthesized composite layers was determined by measuring the decomposition rate of methylene blue solution, as a model compound, on the surface of the layers under ultra violet photo-irradiation. It was found that more than 91% of the methylene blue was degraded after 120 min with a rate constant of k = 0.0192 min−1.  相似文献   

2.
Nitrogen-doped titanium oxide (TiOxNy) films were prepared with ion-assisted electron-beam evaporation. The nitrogen (N) incorporated in the film is influenced by the N2 flux modulated by the N2 flow rate through an ion gun. The TiOxNy films have the absorption edge of TiO2 red-shifted to 500 nm and exhibit visible light-induced photocatalytic properties in the surface hydrophilicity and the degradation of methylene blue. The structures and states of nitrogen in the films are investigated by X-ray diffraction patterns (XRD), and X-ray photoelectron spectroscopy (XPS) and related to their visible light-induced photocatalytic properties. The results indicate that the substitutional N in anatase TiO2 can induce visible light photocatalysis. The substitutional N is readily doped by the energetic nitrogen ions from the ion gun. The best photocatalytic activity is obtained at the largest N loading about 5.6 at.%, corresponding to the most substitutional N in anatase TiO2. The film exhibits the degradation of methylene blue with a rate-constant (k) about 0.065 h−1 and retaining 7° water contact angle on the surface under visible light illumination.  相似文献   

3.
Nano-silicon (nc-Si) was utilized as the charges generator to promote the photocatalytic and super-hydrophilic reactivity of TiO2 film under visible light irradiation. The photocatalytic ability of TiO2/nc-Si composite photocatalyst was evaluated by a set of experiments to photodecompose 100 ppm methylene blue (MB) in aqueous solution. And the super-hydrophilic property was characterized by measuring the water droplet contacts angle, under visible light irradiation in atmospheric air and at room temperature. Under 100 mW/cm2 visible light irradiation, the droplet contact angles were reduced to 0° within 4 h with nc-Si charge generator. Additionally, the rate constant of MB photo-degradation was promoted 6.6 times.  相似文献   

4.
Nano-sized ZrO2/carbon cluster composite materials (Ic’s) were successfully prepared by the calcination of ZrOCl2/starch complex I. Ic’s were found to reduce methylene blue under the irradiation of visible light (λ > 460 nm). The materials obtained by calcining at 400 and 500 °C were selectively loaded with Pt particles to obtain Pt-loaded ZrO2/carbon cluster composite materials denoted as Ic400Pt and Ic500Pt, respectively. In addition, the resultant materials were modified with MnO2 and CeO2 particles to achieve MnO2- and CeO2-loaded ZrO2/carbon cluster/Pt composite materials denoted as Ic400PtMn, Ic500PtMn, Ic400PtCe and Ic500PtCe, respectively. The metal oxides-loaded ZrO2/carbon cluster/Pt composite materials thus synthesized could decompose an aqueous silver nitrate solution by visible light irradiation to give Ag and O2 with the [Ag]/[O2] ratios of ca. 4. Visible light-irradiated water splitting examinations with Ic400PtMn and Ic400PtCe were also investigated and found to yield H2 and O2 with the [H2]/[O2] ratios of ca. 2.  相似文献   

5.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

6.
Fe2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidizing methanol. These powders were characterized by ultraviolet (UV)-visible diffuse reflectance spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the Fe2O3/SrTiO3 composite powders with optimum proportion exhibited higher photocatalytic activity than pure SrTiO3, Fe2O3 and TiO2 (P25) under visible light (λ>440 nm) irradiation. The SEM image of the composite powders showed that SrTiO3 and Fe2O3 particles contacted well. Further research revealed that the calcination temperature is an important factor in the preparation of the composite powder with relatively high photocatalytic ability.  相似文献   

7.
Cobalt Sulfophthalocyanine (CoSPc) sensitized TiO2 sol samples were prepared through a Sol-Gel method using Cobalt Sulfophthalocyanine as a sensitizer. Loading and modified floating photocatalyst was prepared by hydrothermal method using fly-ash cenospheres as a carrier. The properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (DRS). Photocatalytic activity was studied by degrading wastewater of methylene blue under visible light. The results indicate that the fly-ash cenospheres are covered by modified TiO2 film which composed of the anatase, brookite and rutile misch crystal phase. CoSPc/TiO2/fly-ash cenospheres samples have good catalytic activity under visible light, and have strong absorbency during 600-700 nm. The sensitization of CoSPc can enhance visible light catalytic activity of TiO2/fly-ash cenospheres. The degradation rate of methylene blue reaches 73.36% in 180 min under the visible light illumination. But too much CoSPc can decrease its catalytic activity.  相似文献   

8.
Photocatalyst titanium dioxide (TiO2) thin films were prepared using sol-gel process. To improve the photosensitivity of TiO2 at visible light, transition metal of Fe was implanted into TiO2 matrix at 20 keV using the metal plasma ion implantation process. The primary phase of the Fe-implanted TiO2 films is anatase, but X-ray diffraction revealed a slight shift of diffraction peaks toward higher angles due to the substitutional doping of iron. The additional band gap energy levels were created due to the formation of the impurity levels (Fe-O) verified by X-ray photoelectron spectroscopy, which resulted in a shift of the absorption edge toward a longer wavelength in the absorption spectra. The optical band gap energy of TiO2 films was reduced from 3.22 to 2.87 eV with an increase of Fe ion dosages from 0 to 1 × 1016 ions/cm2. The band gap was determined by the Tauc plots. The photocatalysis efficiency of Fe-implanted TiO2 was assessed using the degradation of methylene blue under ultraviolet and visible light irradiation. The calculated density of states for substitutional Fe-implanted TiO2 was investigated using the first-principle calculations based on the density functional theory. A combined experimental and theoretical Fe-implanted TiO2 film was formed, consistent with the experimentally observed photocatalysis efficiency of Fe-implanted TiO2 in the visible region.  相似文献   

9.
Nano-structured TiO2/carbon clusters/Cr2O3 composite material has been successfully obtained by the microwave treatment of a TiO(acac)/Cr(acac)3/epoxy resin complex. The compositions of the composite materials were determined using ICP, elemental analysis and surface characterization by SEM-EDX, TEM and XRD. ESR spectral examinations suggest the possibility of an electron transfer in the process of TiO2 → carbon clusters → Cr2O3 with an oxidation site at TiO2 particles and a reduction site at Cr2O3 particles. The preliminary experimental results show that the calcined materials could decompose methylene blue under visible-light irradiation.  相似文献   

10.
Ag2Cu2O3 films were deposited on glass substrates by reactive sputtering of a composite silver-copper target. The deposited films were annealed in air at 100, 200 and 300 °C. The structure of the films was studied using X-ray diffraction (XRD), their surface morphology was characterised using scanning electron microscopy (SEM) and their electrical resistivity at room temperature was measured using the four point probe method. The 100 °C annealing did not modify either the film structure or the film morphology. On the other hand, Ag2Cu2O3 films were partially decomposed into Ag and CuO after a 200 °C annealing. The decomposition was complete for a 300 °C annealing. The evolution of the film surface morphology as a function of the annealing temperature was discussed in connection to the evolution of the molar volume of the phases constituting the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号