首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
PVK空穴传输层对有机电致发光器件性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
以聚乙烯基咔唑poly(N-vinylcarbazole)(PVK)旋涂层为空穴传输层,着重研究了PVK层厚度对双层器件氧化铟锡(ITO)/PVK/tris-(8-hydroxyquinoline)aluminum(Alq3)/Mg:Ag/Al器件性能的影响。测试结果表明,当Alq3层厚度一定时(50nm),只有PVK层为适当厚度(18nm)时双层器件才有最优良的器件性能,即最低的起亮电压,最高的发光亮度和效率。同时对比了不同PVK层厚度的PVK/Alq3双层器件之间以及PVK/Alq3与N,N′-bis-(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)/Alq3双层器件寿命的差异。测试结果表明,尽管越厚的PVK层对应的PVK/Alq3双层器件发光性能并不是越好,但器件寿命越长。原因是器件Alq3层内形成的Alq3+越少,因此器件稳定性越好;而PVK/Alq3与NPB/Alq3双层器件寿命的差异来自不同空穴传输层的制备工艺和能级结构的不同。  相似文献   

2.
通过调控p型半导体N,N′-bis(naphthalen-1-y)-N,N′-bis(phenyl)benzidine(NPB)层的厚度,制备了结构为ITO/NPB/aluminum(Ⅲ)bis(2-methyl-8-quinolinato)-4-phenylphenolate(BAlq)/NPB(0~18nm)/tri-(8-hydroxyquinoline)-aluminum(Alq3)/Mg:Ag的多层有机电致发光器件.分析结果表明,在该类异质结器件中,NPB不仅可以作为空穴传输材料,在适当的厚度范围内,它还可以起到调控载流子复合区域的作用;当NPB厚度在0~18nm之间变化时,随着其厚度增加器件发光颜色可由蓝色变为绿色.通过器件发光光谱的表征可以得知,器件的载流子复合区域相应地由BAlq层转移至Alq3层.  相似文献   

3.
制备了给体材料为poly(3-hexylthiophene)(P3HT),受体材料为[6,6]-phenyl-C60-butyric acid methyl ester(PCBM),器件结构为ITO/ZnO/P3HT:PCBM/NPB(0,1,5,10,25 nm)/Ag的反型体异质结聚合物太阳能电池.不同厚度的N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine(NPB)阳极缓冲层被用来改善器件性能,研究了NPB阳极缓冲层对器件特性的影响.研究发现,1 nm厚的NPB改善了器件的载流子收集效率,增加了器件的短路电流与开路电压.当NPB缓冲层的厚度达到25 nm时,过厚的NPB导致串联电阻增加,使得器件特性大幅下降.通过电容-电压测试,进一步研究了不同厚度NPB对器件载流子注入与收集的影响,1 nm厚的NPB修饰并没有改善器件的载流子注入但是增加了器件对光生载流子的收集效率,过厚的NPB使得自由载流子的复合占据主导.适合厚度的NPB可以作为一种阳极缓冲层材料应用于聚合物太阳能电池提高器件特性.  相似文献   

4.
作为空穴阻挡材料,BCP通常被用在蓝光以及白光有机电致发光器件中,其空穴阻挡能力随着其厚度的增加而增强;另一方面,在电场作用下,空穴也能隧穿厚度较薄的BCP层.为了深入了解BCP在多层有机电致发光器件中的作用,文章研究了不同电压下BCP层厚度对器件ITO/NPB/BCP/Alq3:DCJTB/Alq3/Al电致发光光谱的影响.实验发现,较薄的BCP层可以部分地阻挡空穴并能调节能量在不同发光层之间的传递,从而容易获得白光器件;但该种结构器件的电致发光光谱随着电压的变化变动较大.当BCP层足够厚时,器件的电致发光光谱也变得相对较稳定;当BCP的厚度为15 nm以上时,空穴就很难再隧穿过去.文章还讨论了不同电压下多层器件的电致发光光谱发生变化的原因.  相似文献   

5.
采用真空蒸镀的方法以星形六苯芴类新材料1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene(HKEthFLYPh)作为能量传输层制备了indium-tin-oxide(ITO)/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-(1,1'-biphenyl)-4,4′-diamine(NPB)/HKEthFLYPh/5,6,11,12-tetraphenylnaphtacene(rubrene)/tris(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag的白色有机电致发光器件. NPB和Alq3分别作为蓝色发光层和电子传输层,NPB和Alq3之间的超薄Rubrene层 作为黄色发光层. 结果表明,超薄rubrene层改善了白光器件的色纯度与稳定性,器件的光谱及色坐标几乎不随驱动电压的变化而改变.当rubrene层厚度为0.3 nm时,器件的Commissions Internationale De L′Eclairage (CIE)色坐标为(0.32,0.33). 驱动电压为18 V时,器件的最大亮度为4816 cd/m2.  相似文献   

6.
在常规的双层绿色有机电致发光器件氧化铟锡(ITO)/N,N′-bis-(1-naphthyl)-N,N′-biphenyl-1,1′-biphenyl-4,4′-diamine(NPB)/8-hydroxyquinolinealuminum(Alq3)/Mg∶Ag的基础上,通过选择适当的空穴阻挡层材料,制备得到以NPB为发光层的蓝色发光器件,其结构为ITO/NPB/bathocuproine(BCP)/Alq3/Mg∶Ag,其最大亮度和最大流明效率分别达到2900cd/m2和0.55lm/W。电致发光谱峰位于445nm,CIE色坐标为(x=0.16,y=0.09),且二者都不随外加电压而变化;利用各功能层的能级结构,对不同结构的器件性能差异进行了分析。  相似文献   

7.
采用真空热蒸镀的方法,在常规的双层器件结构的基础上,设计了三层双异质结有机电致发光器件(OLED):indium-tin oxide(ITO)/N,N′-diphenyl-N,N′-bis(1-naphthyl)(1,1′-biphenyl)-4,4′-diamine(NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)/8-hydroxyquinoline aluminum(Alq3)/Mg∶Ag。通过对器件的电致发光(EL)光谱及器件性能的表征,研究了不同超薄层BCP的厚度对OLED器件性能的影响。结果表明,当超薄层BCP的厚度从0.1nm逐渐增加到4.0nm时,器件的EL光谱实现了绿光→蓝绿光→蓝光的变化;BCP层有效地调节了载流子的复合区域,改变了器件的发光颜色,提高了器件的亮度和发光效率。  相似文献   

8.
基于PVK∶NPB掺杂体系的有机电致发光器件的性能   总被引:4,自引:2,他引:2       下载免费PDF全文
利用溶液旋涂的方法,通过改变复合功能层中poly(N-vinylcarbazole)(PVK)和N,N′-bis-(1-naph-thyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)的质量比,制备结构为indium-tin-oxide(ITO)/PVK:NPB/2,9-dimenthyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Mg:Ag的有机电致发光器件,并对器件的电致发光特性进行了表征。研究结果表明,当复合功能层中PVK和NPB的质量比为1:1时器件性能最好,在该器件的电致光谱中,除了NPB的本征谱峰外,在长波方向还出现了一个位于640nm处的谱峰,这是PVK和NPB产生的电致激基复合物发光,并且随着驱动电压的增加,电致激基复合物的发光强度也相对增强。  相似文献   

9.
双空穴注入的绿色磷光有机电致发光器件   总被引:4,自引:0,他引:4  
张静  张方辉 《发光学报》2012,33(10):1107-1111
制作了一种新型绿色磷光有机电致发光二极管。器件结构为ITO/HAT-CN(x nm)/MoO3(30 nm)/NPB(40 nm)/TCTA(10 nm)/CPB∶GIr1(30 nm,14%)/BCP(10 nm)/Alq3(25 nm)/LiF(1 nm)/Al(100 nm),其中X=0,8,10,12,14,15 nm。电流密度-电压-亮度特性表明该结构有利于降低驱动电压和增加器件亮度。当HAT-CN厚度为12 nm时,器件的最高亮度可以达到32 480 cd/m2,起亮电压为3.5 V左右,发光效率为24.2cd/A。所设计的空穴型器件证明该器件结构具有很好的空穴注入和传输特性。  相似文献   

10.
空穴注入层对蓝色有机电致发光器件性能的影响   总被引:1,自引:0,他引:1  
以DPVBi为发光层,NPB为空穴传输层,在阳极ITO和NPB之间分别插入不同的空穴注入层CuPc和PEDOT:PSS,制备了两种结构的蓝色有机电致发光器件(OLEDs):ITO/CuPc/NPB/DPVBi/BCP/Alq3/Al和ITO/PEDOT:PSS/NPB/DPVBi/BCP/Alq3/Al,研究了不同空穴注入材料对蓝色OLEDs发光性能的影响,并与没有空穴注入层的器件进行了比较.其中CuPc分别采用旋涂和真空蒸镀两种丁艺,比较了不同成膜工艺对器件发光特性的影响.结果表明:加入空穴注入层的器件比没有空穴注入层器件性能要好,其中插入水溶性CuPc的器件,其发光亮度和效率虽然比蒸镀CuPc器件要低,但比插入PEDOT:PSS 器件发光性能要好.又由于水溶性CuPc采用旋涂工艺成膜,与传统CuPc相比,制备工艺简单,所以为一种不错的空穴注入材料.  相似文献   

11.
DPVBi空穴阻挡层对OLED性能的优化   总被引:2,自引:1,他引:1  
廖亚琴  甘至宏  刘星元 《发光学报》2011,32(10):1041-1045
研究了宽带隙有机小分子材料DPVBi作为空穴阻挡层对OLED器件效率和亮度的优化作用.DPVBi的引入有效地改善了以PEDOT:PSS做空穴注入层的OLED器件的空穴过剩问题.实验结果表明:通过优化DPVBi的厚度,插入30 nm厚的DPVBi空穴阻拦层可以有效地平衡OLED器件的电子和空穴浓度,降低器件的工作电压,优...  相似文献   

12.
We report on the fabrication of blue organic light-emitting devices (BOLEDs) with structure: ITO/NPB/DPVBi/Alq3/LiF/Al. The hole-blocking effect in NPB/DPVBi interface was indirectly demonstrated and deduced by inserting DCJTB layer. In addition, the effect of the device with better JV characteristics because of the extra DCJTB layer is discussed as well. However, the performance of devices was investigated with various thicknesses of DPVBi layer. The result shows that the device with proper thickness of DPVBi layer generating better electron injection enhances efficiency and luminance for BOLED.  相似文献   

13.
利用一种来源于PPV的发蓝光的齐聚物材料2,5,2',5'-tetra(4'-biphenylenevinyl)-biphenyl(TBVB)制作非掺杂的有机电致蓝光和白光器件。蓝光器件的结构为ITO/NPB/TBVB/Alq3/LiF/Al,其中TBVB用作发光层;白光器件的结构为ITO/NPB/TBVB/rubrene/Alq3/LiF/Al,其中TBVB与超薄层(平均“厚度”0.05~0.20nm)的Rubrene相结合用作发光层,二者分别发蓝光和黄光。在蓝光器件中,当TBVB的厚度为30nm时,器件发出色坐标为(0.20,0.26)的蓝光,其最大亮度和效率分别达到2154cd/m2和1.62cd/A。在白光器件中,可通过调节TBVB和Rubrene的厚度实现对器件发光色度的调节。当TBVB和Rubrene的厚度分别为10,0.15nm时,器件在亮度为4000cd/m2时发光色坐标为(0.33,0.34),非常接近白光等能点,且随着电压的变化始终处于白光区。当电压为16V时该器件达到最高亮度4025cd/m2;当电压为6V时器件有最高的效率3.2cd/A。  相似文献   

14.
张春玉  王庆凯  秦莉  荣华 《发光学报》2015,36(4):454-458
为了分析微腔有机电致发光器件(MOLED)发光的角度依赖性,根据微腔计算公式,采用传输矩阵法进行了模拟计算,并进行了实验验证。所设计器件的结构为Glass/DBR/ITO(58 nm)/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm )/Al(150 nm)。由实验得到的电致发光(EL)谱可以观察到:随着探测角度的加大,发光峰蓝移、强度减小。与模拟得出的不同观测角度下的反射谱进行比较,发现透射峰值与EL峰值相对应。模拟分析发现,这是由于观测角不同,微腔两个反射镜的S和P偏振的反射率及反射相移不同,同时腔内光学厚度发生变化,即微腔长度变化共同作用所导致。  相似文献   

15.
路飞平  李建丰  孙硕 《物理学报》2013,62(24):247201-247201
功能层厚度是影响有机电致发光器件出光效率的主要因素之一,故获得不同功能层厚度对器件出光特性的影响规律是制备高性能器件的重要基础. 本文基于薄膜光学原理、电偶极子辐射理论及Fabry-Pérot微腔原理,建立了结构为glass/ITO/N,N0-bis(naphthalen-1-yl)-N,N0-bis(phenyl)-benzidine(NPB)/tris(8-hydroxyquinoline)aluminum(Alq3)/molybdenum trioxide(MoO3)/NPB/Alq3/Al的叠层有机电致发光器件的光学模型,系统地研究了各个功能层厚度对叠层有机电致发光器件出光强度的影响,得到了功能层厚度对器件出光强度影响的规律. 该模型的建立与所获得的结果可对深入了解叠层有机电致发光器件的工作机理以及制备高性能的器件提供一定的帮助. 关键词: 叠层有机发光器件 出光特性 厚度 数值研究  相似文献   

16.
效率增强的新型蓝色有机发光器件   总被引:7,自引:4,他引:3       下载免费PDF全文
使用一种新型空穴传输材料J003制备了不同结构、不同发光层厚度的两组蓝色发光器件,其结构为:ITO/CuPc/J003/JBEM:perylene/Alq3/LiF/Al和ITO/CuPc/J003/JBEM:perylene/TPBi/Alq3/LiF/Al,这里CuPc(Copper phthalocyanine)和LiF分别为空穴注入层(HIL)和电子注入层(EIL),J003为空穴传输层(HTL),JBEM(9,10-bis(3,5'-diaryl)phenylylanthracene)为发光层(EML),TPBj(1,3,5-tri(phenyl-2-benzimidazole)-benzene)为空穴阻挡层(HBL),Alq3(tris(8-quinolinolato)aluminium complex)为电子传输层(ETL).两种结构中前者为无阻挡层的普通型结构,后者在发光层和电子传输层中加入了空穴阻挡层,是新型阻挡层结构.研究了空穴阻挡层的引入在不同厚度发光层时对器件发光性能的影响,结果表明,新型阻挡层结构能明显提高器件的亮度和效率,但依赖于发光层厚度,利用能级图分析了其中的原因.  相似文献   

17.
为提高有机电致发光器件(OLEDs)的阴极电子注入效率,我们设计了新型的阴极杂化修饰层,其结构为Bphen∶LiF/Al/MoO3,将其应用到器件ITO/NPB/Alq3/Al中,参考器件的电子注入层选用传统材料LiF。实验研究表明,与传统的阴极修饰层LiF相比,基于这种杂化结构的阴极修饰层非常有效。测试了器件的电致发光光谱(EL谱),其峰值位于534 nm,发光来自于Alq3,实验中我们可以观察到明亮的绿色发光。将其与传统参考器件的EL谱进行对比,在电流密度40 mA·cm-2下,两个器件的电致发光光谱是一致的。在0~100 mA·cm-2范围内,对器件的EL谱进行了测试。实验结果表明,随着电流密度的增加,器件的发光增强,但是EL谱的形状和谱峰的位置是固定不变的。与参考器件对比,基于杂化修饰层的器件的发光性能更好。研究表明,杂化修饰层的最佳参数为Bphen∶LiF(5 nm; 6%)/Al(1 nm)/MoO3(5 nm),在测试范围内,器件的最大电流效率和最大功率效率分别为4.28 cd·A-1和2.19 lm·W-1,相比参考器件提高了25.5%和23.7%。器件的电流密度-电压特性曲线表明阴极杂化修饰层可以增强电子的注入,使器件中的载流子更加平衡,从而提高了器件的发光性能。从两个角度对器件效率的增强进行了理论方面的论证。一方面利用阴极杂化修饰层的作用机制来解释。在HML中,LiF能填充Bphen的电子陷阱,增强电流的注入,同时HML也能限制空穴的传输,减小空穴电流。另一方面从电荷平衡因子的角度,HML增强了电子的注入,使得器件的电荷平衡因子增大,空穴和电子的平衡性更好。实验研究表明,阴极杂化修饰层很好地增强了器件的效率。  相似文献   

18.
具有穿插界面结构的高效绿光有机电致磷光器件   总被引:1,自引:0,他引:1       下载免费PDF全文
以传统有机电致磷光器件ITO/NPB/CBP∶Ir(ppy)3/BAlq/Alq3/LiF/Al为研究对象,在NPB/CBP∶Ir(ppy)3、CBP∶Ir(ppy)3/BAlq及BAlq/Alq3界面处构造交互穿插结构。器件的光电性能测试表明:交互穿插结构一方面能够降低电流密度,减少高电流密度下磷光猝灭中心的形成;另一方面能增加载流子复合界面面积,从而分散界面三线态激子,降低三线态-三线态激子的猝灭。此外,界面凸起的存在还有利于器件的光耦合输出。实验结果表明:当穿插厚度为10 nm,器件的最大电流效率达到34.0 cd/A,与传统器件的电流效率18.7 cd/A相比,提高了55%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号