首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These findings are in qualitative agreement with recent theoretical and computational studies of inertial particle clustering in turbulence. Because of the large Reynolds numbers a broad scaling range of particle clustering due to turbulent mixing is present, and the inertial clustering can clearly be distinguished from that due to mixing of fluid particles.  相似文献   

2.
We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.  相似文献   

3.
We present a one-dimensional dynamic model of polydisperse granular mixture with the fractal characteristic of the particle size distribution, in which the particles are subject to inelastic mutual collisions and are driven by Gaussian white noise. The inhomogeneity of the particle size distribution is described by a fractal dimension D. The stationary state that the mixture reaches is the result of the balance between energy dissipation and energy injection. By molecular dynamics simulations, we have mainly studied how the inhomogeneity of the particle size distribution and the inelasticity of collisions influence the velocity distribution and distribution of interparticle spacing in the steady-state.The simulation results indicate that, in the inelasticity case, the velocity distribution strongly deviates from the Gaussian one and the system has a strong spatial clustering. Thus the inhomogeneity and the inelasticity have great effects on the velocity distribution and distribution of interparticle spacing. The quantitative information of the non-Gaussian velocity distribution and that of clustering are respectively represented.  相似文献   

4.
Dissipation in solids describes conversion of kinetic energy to thermal energy. Heat capacity of a solid relates to the kinetic energy of the oscillations of its atoms with the assumption that they are in thermal equilibrium. Previous studies investigated criteria related to thermal relaxation, the process by which thermal equilibrium is established. They examined conditions for irreversible distribution of energy among the modes of a nonlinear periodic structure that represents atoms in a solid. These studies all point to the chaotic behavior of a freely vibrating nonlinear lattice as the kernel of the problem in addressing thermal relaxation. This paper extends the results of previous studies on thermalization to modeling of dissipation as energy absorption that takes place during forced vibration of particles in a nonlinear lattice. Results show that dissipation and chaotic behavior of the particles develop simultaneously. Such behavior develops when the forcing frequency falls within a resonance band. The results also support the argument that for a real solid, both in terms of size and complexity, resonance bands overlap significantly broadening the frequency range within which dissipation takes place.  相似文献   

5.
本文通过直接数值模拟对均匀各向同性湍流中颗粒对湍流的变动作用进行了研究.颗粒相的体积分数很小而质量载荷足够大,以至于颗粒之间的相互作用可以忽略不计,而重点考虑颗粒与湍流间能量的交换。颗粒对湍流的反向作用使得湍动能的耗散率增强,以至于湍动能的衰减速率增大.湍动能的衰减速率随颗粒惯性的增大而增大。三维湍动能谱显示,颗粒对湍动能的影响在不同的尺度上是不均匀的。在低波数段,流体带动颗粒,而高波数段则相反.  相似文献   

6.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

7.
The wearless friction originating from molecular interactions has been discussed in this paper. We find that the frictional properties are closely related to the structural match of two surfaces in relative motion. For the surfaces with incommensurate structure and week inter-surface interaction, zero static and kinetic friction can be achieved. In a sliding considered as in a quasi-static state, the energy dissipation initiates when interfacial particles move in a discontinuous fashion, which gives rise to a finite kinetic friction. The state of superlubricity is a result of computer simulations, but the prediction will encourage people to look for a technical approach to realizing the state of super low friction.  相似文献   

8.
Small scale clustering of inertial particles and relative velocity of particle pairs have been fully characterized for statistically steady homogeneous isotropic flows. Depending on the particle Stokes relaxation time, the spatial distribution of the disperse phase results in a multi-scale manifold characterized by local particle concentration and voids and, because of finite inertia, the two nearby particles have high probability to exhibit large relative velocities. Both effects might explain the speed-up of particle collision rate in turbulent flows. Recently it has been shown that the large scale geometry of the flow plays a crucial role in organizing small scale particle clusters. For instance, a mean shear preferentially orients particle patterns. In this case, depending on the Stokes time, anisotropic clustering may occur even in the inertial range of scales where the turbulent fluctuations which drive the particles have already recovered isotropy. Here we consider the statistics of particle pair relative velocity in the homogeneous shear flow, the prototypical flow which manifests anisotropic clustering at small scales. We show that the mean shear, by imprinting anisotropy on the large scale velocity fluctuations, dramatically affects the particle relative velocity distribution even in the range of small scales where the anisotropic mechanisms of turbulent kinetic energy production are sub-dominant with respect to the inertial energy transfer which drives the carrier fluid velocity towards isotropy. We find that the particles’ populations which manifest strong anisotropy in their relative velocities are the same which exhibit small scale clustering. In contrast to any Kolmogorov-like picture of turbulent transport these phenomena may persist even below the smallest dissipative scales where the residual level of anisotropy may eventually blow-up. The observed anisotropy of particle relative velocity and spatial configuration is suggested to influence the directionality of the collision probability, as inferred on the basis of the so-called “ghost collision” model.  相似文献   

9.

The wearless friction originating from molecular interactions has been discussed in this paper. We find that the frictional properties are closely related to the structural match of two surfaces in relative motion. For the surfaces with incommensurate structure and week inter-surface interaction, zero static and kinetic friction can be achieved. In a sliding considered as in a quasi-static state, the energy dissipation initiates when interfacial particles move in a discontinuous fashion, which gives rise to a finite kinetic friction. The state of superlubricity is a result of computer simulations, but the prediction will encourage people to look for a technical approach to realizing the state of super low friction.

  相似文献   

10.
刘传平  王立  张富翁 《物理学报》2014,63(4):44502-044502
本文采用数值方法分析了一维垂直振动床内颗粒动能/温度、能量耗散以及体积分数的分布规律.离散元模拟结果表明:当床底做低频、小振幅振动时,床层内颗粒整体随床底上下运动,沿床高方向颗粒动能逐渐增加;对于高频振动,床层内的颗粒做无规则的运动,沿床高方向颗粒动能逐渐降低.在不同振动频率(高频、低频)下体积分数、能量耗散也表现出不同的分布规律.将离散元模拟结果与动力学理论计算值对比,当系统做高频振动时,两模型所得结果基本吻合;而对于低频、小振幅振动,所得结果存在较大差异.由于低频、小振幅振动时床内颗粒并非做无规则运动,动力学理论的适用性需进一步完善.  相似文献   

11.
The tuning of a dynamic vibration absorber is considered such that either the kinetic energy of the host structure is minimised or the power dissipation within the absorber is maximised. If the host structure is approximated as a damped single degree of freedom, the optimal values for the ratio of the absorber's natural frequency to the host structure and the optimal damping ratio of the absorber are shown to be the same whether the kinetic energy of the host structure is minimised or the power dissipation of the absorber is maximised. It is also demonstrated that the total power input into the system does not depend on the two parameters but only on the host structure's mass.  相似文献   

12.
通过高速摄像的方法观测了玻璃颗粒组成的准二维气态颗粒流的冷凝耗散过程,并和理想情况下的均匀耗散的颗粒流体理论作了比较,实验发现气态颗粒部分在耗散堆积过程中近似地满足高斯分布;从动能的结果来看,实际耗散过程和流体理论所预测的不同.实验发现冷凝分为两个阶段:当动能的贡献以气体颗粒为主时,发现颗粒以恒定的速度堆积,动能耗散主要由其中以气态分布的颗粒的沉积速率α,颗粒温度T和气态部分的平动速度νg决定;当气态颗粒数目趋向于0,能量耗散主要来自于密堆颗粒的表面层部分 关键词: 离散体系 耗散性  相似文献   

13.
The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon.  相似文献   

14.
We present a model for the motion of hard spherical particles on a two-dimensional surface. The model includes both the interaction between the particles via collisions and the interaction of the particles with the substrate. We analyze in detail the effects of sliding and rolling friction, which are usually overlooked. It is found that the properties of this particulate system are influenced significantly by the substrate-particle interactions. In particular, sliding of the particles relative to the substrate after a collision leads to considerable energy loss for common experimental conditions. The presented results provide a basis that can be used to realistically model the dynamical properties of the system, and provide further insight into density fluctuations and related phenomena of clustering and structure formation.  相似文献   

15.
The objective of this paper is to present a model for predicting clustering of aerosol particles in uniformly sheared turbulent flows laden with small heavy particles. The background of the model for predicting clustering is based on a kinetic equation for the two-point probability density function of the relative velocity distribution of two particles. The effect of clustering of particles in homogeneous turbulent shear flows is demonstrated and compared with known results of direct numerical simulations. It is shown that the universality of the clustering process can take place if the characteristic cluster size is smaller than the shear scale.  相似文献   

16.
We report experimental measurements on the rheology of a dry granular material under a weak level of vibration generated by sound injection. First, we measure the drag force exerted on a wire moving in the bulk. We show that when the driving vibration energy is increased, the effective rheology changes drastically: going from a non-linear dynamical friction behavior --weakly increasing with the velocity-- up to a linear force-velocity regime. We present a simple heuristic model to account for the vanishing of the stress dynamical threshold at a finite vibration intensity and the onset of a linear force-velocity behavior. Second, we measure the drag force on spherical intruders when the dragging velocity, the vibration energy, and the diameters are varied. We evidence a so-called “geometrical hardening" effect for smaller-size intruders and a logarithmic hardening effect for the velocity dependence. We show that this last effect is only weakly dependent on the vibration intensity.  相似文献   

17.
《Physics letters. A》1998,239(6):378-384
The propagation of the dust ion acoustic and dust acoustic modes in a dusty plasma is studied. The effect of the coupling of the charge fluctuation on the dust particles to the modes is taken into account self-consistently. It is found that the charge fluctuation leads to frequency down shift as well as dissipation of the modes. For the dust ion acoustic modes, these are significant only when the frequency characterizing the rate of capture of electrons by the dust particles in the equilibrium state is of the order of the frequency of the mode, and the mode can propagate without significant dissipation only when its frequency is well above this characteristic frequency. For the dust acoustic modes, these are significant only when the frequency characterizing the rate of capture of ions by the dust particles in the equilibrium state is of the order of the frequency of the mode, and the mode can propagate without significant dissipation only when its frequency is well above this characteristic frequency.  相似文献   

18.
The dynamics of homogeneous shear turbulence laden with spherical finite-size particles is investigated using fully resolved numerical simulations to understand how the presence of particles modulates turbulent shear flows. We focus on a dilute flow laden with non-sedimenting particles whose diameter is slightly smaller than or comparable with those of vortex cores in turbulence. An immersed boundary method is adopted to represent a spherical finite-size particle. Numerical results show that the presence of particles augments the viscous dissipation of turbulence kinetic energy, which leads to a slower increase in the turbulence energy. Although the augmentation of energy dissipation occurs predominantly inside viscous layers surrounding particles in an initial period, the contribution from their outside becomes more significant due to the modification of turbulence structures as turbulence develops. It is found that the particles exhibit weak tendency to accumulate in vortex layers. The particles approaching and colliding with vortex layers induce large velocity fluctuations, which leads to the generation and shedding of thin vortex tubes. Newly generated vortex tubes interact with developed vortex tubes and layers, and modify the entire structure of the vorticity field.  相似文献   

19.
本文对超短超强激光脉冲辐照高密度等离子体产生的静电冲击波加速离子的能谱展宽机理进行了数值研究.着重讨论了三种冲击波加速离子的能谱展宽机理:能量沉积到离子中使得冲击波前沿不断减速,被加速离子与背景粒子的碰撞,以及高能离子到达靶背面时受到鞘层场进一步加速.还研究了驱动激光脉冲宽度对冲击波加速离子能谱宽度的影响. 关键词: 激光等离子体 冲击波加速 能谱展宽  相似文献   

20.
YE Wei  CHEN Na 《理论物理通讯》2004,41(5):751-756
Isospin effects on particle emission of fissioning isobaric sources 202Fr, 202Po, 202Tl and isotopic sources 189,202,212Po, and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号