首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
气体水合物生成机理是气体水合物研究领域的一个热点,对气体水合物技术的应用有重要意义。先前实验中作者首次发现铁丝同十二烷基苯磺酸钠水溶液的适当组合可以促使HCFC141b气体水合物快速结晶和生长。本文进一步揭示了十二烷基苯磺酸钠和不同金属丝对HCFC141b气体水合物生成过程的影响机理。作者结合国内外已有的研究成果总结得到了促使气体水合物快速结晶成核和生长的关键因素,并从传热传质角度提出了促进气体水合物快速结晶成核和生长的一些建议。  相似文献   

2.
《低温与超导》2021,49(2):55-60,104
水合物在相变蓄冷等领域具有广泛的应用前景,而降低水合物成核诱导期、提升水合物生长速率是影响水合物蓄冷技术发展的关键因素。开发了一套可视化水合物原位生成实验系统,通过反应釜底部气泡板持续产生气泡强化水合物成核生长,重点对鼓泡法下水合物诱导期和生长速率进行了研究。实验结果表明,气泡表面形成壳状水合物并不断堆积。鼓泡法显著地降低了甲烷水合物诱导期,在SDS体系下,鼓泡法对诱导期的缩减最高达到93.6%。同时,鼓泡法对后续水合物的生长也具有显著促进效果,使水合物生长速率提高15.1~37.5%。在纯水体系中,鼓泡法提高了甲烷气体的转化率,最高提高了14.57倍。同时实验呈现温度越低,气体转化率和水合物生长速率越大的规律。  相似文献   

3.
表面活性剂对水合物生长过程的定量影响   总被引:1,自引:0,他引:1  
为了揭示表面活性剂对气体水合物生长过程的定量影响,实验研究了十二烷基苯磺酸钠(SDBS)对R141b水合物的生长过程的影响,分析了SDBS对R141b水合反应物界面张力的影响,研究结果表明:R141b水合物生成条件下SDBS的临界胶束浓度约为400mg/kg,1.0℃400mg/kg SDBS溶液中R141b水合物的平均引导时间为3 min,水合率约为每分钟1.7%。  相似文献   

4.
甲烷水合物形成促进技术实验研究   总被引:8,自引:0,他引:8  
实验研究了液态烃(环戊烷和甲基环己烷)对甲烷水合物形成条件的影响,测试结果表明液态烃降低了甲烷水合物的形成压力,并改变了形成水合物的结构。实验研究了促进剂(液态烃和表面活性剂)对水合物形成诱导时间和生长过程的影响,结果表明液态烃和表面活性剂降低了水合物形成的诱导时间,提高了水合物形成速度;而且表面活性剂提高了水合物形成过程中的耗气量,并改变了水合物形成机理。  相似文献   

5.
《光子学报》2021,50(8)
甲烷水合物(可燃冰)作为一种储量巨大、分布广泛的清洁能源而备受关注。围绕甲烷水合物的开采、以固态水合物形式储运天然气和氢气等问题开展基础科学研究,具有重要的科学意义和应用价值。成核过程是甲烷水合物形成的关键第一步,由甲烷、水分子形成团簇并逐渐演化形成水合物的微观过程。然而,由于缺乏在高压环境下研究成核微观过程的有效实验方法,针对成核过程的实验研究进展缓慢。本文首先对气体水合物的结构及其性质进行了回顾;然后,以水合物演化的分子动力学模拟为基础,梳理现有关于水合物演化路径的初步认知;最后,以超快非线性光谱学方法为主,讨论了水合物实验研究的进展和展望。  相似文献   

6.
溶剂和超声波快速制备β-D-葡萄糖的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了,利用溶剂和超声波的协同作用,在较缓和的条件下快速制备β-D-葡萄糖的方法,研究内容主要包括成核溶剂的挑选,以及葡萄糖溶液浓度,温度,超声电功率密度辐照时间等因素的组合对成核晶型的影响,获得了快速制备β-D-葡萄糖的最佳组合条件,并提出了超声波协同溶剂影响成核晶型的机理,为超声空化泡崩溃时产生的“热点效应”。  相似文献   

7.
功率超声强化溶液冻结机理的研究进展   总被引:3,自引:0,他引:3  
功率超声波强化溶液结晶是一种新型的结晶技术,由于其具有促进溶液冻结、控制晶体粒径分布和提高冻结产品质量的作用,近年来受到越来越多的关注。从过冷溶液的一次冰晶成核、二次冰晶成核以及树枝状冰晶体的生长速度等方面对超声波强化溶液结晶的机理进行了综述,并对超声结晶机理研究的发展方向提出了建议。  相似文献   

8.
衬底表面覆盖对薄膜成核和生长的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
邵庆益  方容川  廖源  韩祀瑾 《物理学报》1999,48(8):1509-1513
在薄膜生长的成核阶段,稳定聚集体将逐渐覆盖衬底表面.同时,薄膜的生长将发生在被覆盖的衬底部分,而成核则发生在未被覆盖的部分.本文研究了衬底表面被覆盖的程度对薄膜成核和生长的影响,对广泛应用的薄膜理论,给出一些修正公式.结果表明,成核速率正比于衬底表面未被覆盖面积的平方.而薄膜理论认为成核速率是时间常量,似显得粗糙. 关键词:  相似文献   

9.
利用金属有机化合物气相沉积(MOCVD)在蓝宝石衬底上生长了高阻GaN薄膜。对GaN成核层生长的反应室压力、生长时间和载气类型对GaN缓冲层电学特性的影响进行了分析。实验结果表明,延长GaN成核层的生长时间,降低成核层生长时的反应室压力,载气由H2换为N2都会得到高阻的GaN缓冲层。样品的方块电阻Rs最高为2.49×1011 Ω/□。以高阻GaN样品为衬底制备了AlGaN/AlN/GaN结构HEMT器件,迁移率最高达1 230 cm2/(V·s)。  相似文献   

10.
采用分子动力学对CO2水合物生长进行模拟并分析其变化规律,探究了CO2水合物晶体生长的微观过程以及不同温度、压力条件对水合物生长特性的影响机理. CO2水合物的生长是从已有晶胞附近向外扩散并逐具有序性的过程,水分子间逐渐形成四面体氢键与CO2共同形成完整的水合物笼. 另外, CO2水合物生长需要合适的过冷度,在压力为30MPa、温度范围265K至275K,水合物笼型晶胞可正常生成,并且温度越低,生成速率越快;在高温290K和300K时,体系分子运动加剧,水合物笼直接散开. 此外,在温度为270K、不同压力条件下,发现相较温度而言,由于CO2溶解度随压力变化的不明显性,导致CO2水合物增长速度伴随压力的变化相对不敏感.  相似文献   

11.
The electrochemical mechanism of Fe-Ni electrodeposition under ultrasonic was investigated by electrochemistry methods. Linear scanning voltammetry and cyclic voltammetry were used to show that the deposition process changed from the diffusion control under static conditions to an electrochemical control under ultrasonic conditions. Chronoamperometry curves showed that the Fe-Ni deposit occurred by a mechanism that instantaneous nucleation is followed by three-dimensional growth under charge transfer control. Chronopotentiogram indicated that because of the intensity of the ultrasound stripping effect, high ultrasonic power is unsuitable for electroforming Fe-Ni alloy, and a high current density is also not appropriate. Thus, the optimum parameters for Fe-Ni electrodeposition under ultrasonic conditions are ultrasonic power between 80 and 100 W (power density 0.28–0.35 W/cm2), and a current density lower than 10 mA/cm2 with temperature 323 K and pH 3. Experiments were performed to verify that the Fe-Ni masks prepared by ultrasonic-assisted electroforming had a good surface quality. The increase in ultrasonic power can obtain a larger grain size, thus got a low thermal expansion coefficient and a high hardness. Therefore, ultrasonic-assisted electrodeposition technology provides an effective and practically feasible manufacturing method for OLED Fe-Ni mask preparation.  相似文献   

12.
Experiments were carried out on ultrasonic cavitation in glycerin. The zone near the emitter has a structure from interacting gas-vapor bubbles; this structure takes the form of fractal clusters. The photometry of passed laser emission was the tool for studying dynamics of fluctuations. In transitive mode, the power spectrum of fluctuation varies by the law inversely proportional to frequency. Distributions of local fluctuations are different from Gaussian and exhibit the property of scale invariance. The qualitative behavior of the frequency dependence of the spectral fluctuation density was tested while varying the power of the ultrasonic emitter. It was demonstrated that the growth of the high-frequency margin of flicker-type behavior evidences for growing instability and can be considered as a forerunner of possible large-scale outbursts. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 05-08-01320a).  相似文献   

13.
In this paper, the crystallization of L-glutamic acid with application of ultrasound was explored in detail, including the process of nucleation, polymorphic control and polymorphic transformation. The induction time and metastable zone widths (MSZWs) were measured with and without ultrasound during the nucleation process. The induction time and MSZWs were decreased by ultrasound and the induction time was further decreased by higher ultrasonic power. The calculated nucleation parameters (such as interfacial energy, critical nucleus size and critical Gibbs energy) showed an obvious decrease in the presence of ultrasound, indicating that the nucleation was enhanced with application of ultrasound. By adjusting the ultrasonic power in the quench cooling process, the difference in nucleation temperatures would determine the distribution of polymorphs. In further, the polymorphic transformation was investigated quantitatively, and to the best of our knowledge, it was the first time to study the transformation kinetics with ultrasound using Avrami-Erofeev model. In the transformation process, the crystallization mechanism of the stable form was modified by ultrasound. The ultrasound eliminated the nucleation element in the rate-limiting step and facilitated the crystal growth of stable form. Thus, the ultrasound has a profound influence on L-glutamic acid crystallization.  相似文献   

14.
The effect of ultrasonic irradiation (42,150 Hz, 17 W dm(-3)/7.1 W cm(-2)) on the growth of calcite in the presence of the inhibitor nitrilotris(methylene phosphonic acid) (NTMP) was investigated at constant composition conditions. In seeded growth experiments, it was found that the inhibiting effect of NTMP on crystal growth could be seriously mitigated under influence of ultrasonic irradiation. An approximately twofold increase in volumetric growth rate was achieved during ultrasonic irradiation, and recovery of the growth rate following inhibition was strongly enhanced compared to growth experiments without ultrasonic irradiation. The results could be explained in part by the physical effect of ultrasound that causes breakage and attrition of poisoned crystals, which resulted in an increase in fresh surface area. Mass spectroscopy analysis of sonicated NTMP solutions revealed that there is also a chemical effect of ultrasound that plays an important role. Several breakdown products were identified, which showed that ultrasound caused the progressive loss of phosphonate groups from NTMP, probably by means of physicochemically generated free radicals and/or pyrolysis in the hot bubble-bulk interface.  相似文献   

15.
Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol   总被引:16,自引:0,他引:16  
The combination of ultrasound and photochemistry have been used to degrade an aqueous solution of 2,4,6-trichlorophenol. An ultrasonic probe of 22 kHz frequency and a UV tube of 15 W have been used. Anatase grade TiO2 was used as the semiconductor catalyst. The effect of parameters such as ultrasonic intensity, operating conditions, type of ultrasonic equipment, and mode of UV transmission have been studied. The sonophotochemical degradation has been found to be dependent on the intensity of sonication, temperature of the reaction, and the type of ultrasonic equipment used, but was independent of the mode of UV transmission. Enhancement in the degradation rate has been observed at a higher sonication intensity and temperature of the solution.  相似文献   

16.
Ultrasonication is an emerging and evergreen technique for the efficient synthesis of the catalytically active heterostructured materials. In-situ one-pot ultrasonic-assisted synthesis method was demonstrated in this work for the fabrication of silver tungstate encrusted polypyrrole nanocomposite using semi-automatic ultrasonic probe maintained at 34°C/50 kHz ultrasonic frequency and at 150 W ultrasonic power. This material retains enhanced optical, electrical, morphological properties, photocatalytic behavior in photodegradation of congo red dye, tetracycline drug and its electrochemical sensing potential for the effective determination of a broad spectrum of antibacterial drug, nitrofurazone. Optical properties were investigated using UltraViolet–Visible diffuse reflectance spectral (UV–VIS DRS) data along with Tauc’s bandgap energy calculations. The morphological properties were examined using FESEM and TEM micrographs. All the PXRD and XPS details prove the effective distribution of PPy on the surface of Ag2WO4 rods with the help of powerful ultrasonic assistance. PPy acted as a support for nucleation and growth of Ag2WO4 and an inhibitor of phase transformations. Ag2WO4/PPy exhibits great photocatalytic behavior while comparing with pure PPy and Ag2WO4 in the degradation of carcinogenic dye congo red and antibiotic drug tetracycline. In addition to that, Ag2WO4/PPy modified GCE exposed a widespread linear range from 0.1 to 107 µM along with a very low detection limit of 12 nM and huge sensitivity of 1.74 µA µM−1cm−2 in the electrochemical determination of nitrofurazone.  相似文献   

17.
This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid-phase sample collection into a continuous flow surface sampling probe/electrospray emitter for mass spectrometry based chemical imaging. The flow probe/emitter device was placed in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collected was immediately aspirated into the probe and onto the electrospray emitter, ionized and detected with the mass spectrometer. Freehand drawn ink lines and letters and an inked fingerprint on microscope slides were analyzed. The circular laser ablation area was about 210 μm in diameter and under the conditions used in these experiments the spatial resolution, as determined by the size of the surface features distinguished in the chemical images, was about 100 μm.  相似文献   

18.
The aim of this work was to study the emulsification assisted by ultrasonic probe (22.5 kHz) and investigate the removal of copper(II) ions from aqueous solution using water-in-oil-in-water (W/O/W) emulsion liquid membrane process (ELM). The membrane was prepared by dissolving the extractant bis(2-ethylhexyl)phosphoric acid (D2EHPA) and the hydrophobic surfactant sorbitan monooleate (Span 80) in hexane (diluent). The internal phase consisted of an aqueous solution of sulfuric acid. Effects of operating parameters such as emulsification time, ultrasonic power, probe position, stirring speed, carrier (D2EHPA) and surfactant (Span 80) concentrations volume ratios of organic phase to internal striping phase and of external aqueous phase to membrane (W/O) phase, internal phase concentration and choice of diluent on the membrane stability were studied. With ultrasound, the W/O emulsion lifetime were much higher than those reported previously by mechanical agitation. The effect of carrier and Cu(II) initial concentration on the extraction kinetics was also investigated. Nearly all of the Cu(II) ions present in the continuous phase was extracted within a few minutes. Additionally, the influence of H2SO4 concentration on the stripping efficiency was examined.  相似文献   

19.
The objective of this research was to modify the crystal shape and size of poorly water-soluble drug ropivacaine, and to reveal the effects of polymeric additive and ultrasound on crystal nucleation and growth. Ropivacaine often grow as needle-like crystals extended along the a-axis and the shape was hardly controllable by altering solvent types and operating conditions for the crystallization process. We found that ropivacaine crystallized as block-like crystals when polyvinylpyrrolidone (PVP) was used. The control over crystal morphology by the additive was related to crystallization temperature, solute concentration, additive concentration, and molecular weight. SEM and AFM analyses were performed providing insights into crystal growth pattern and cavities on the surface induced by the polymeric additive. In ultrasound-assisted crystallization, the impacts of ultrasonic time, ultrasonic power, and additive concentration were investigated. The particles precipitated at extended ultrasonic time exhibited plate-like crystals with shorter aspect ratio. Combined use of polymeric additive and ultrasound led to rice-shaped crystals, which the average particle size was further decreased. The induction time measurement and single crystal growth experiments were carried out. The results suggested that PVP worked as strong nucleation and growth inhibitor. Molecular dynamics simulation was performed to explore the action mechanism of the polymer. The interaction energies between PVP and crystal faces were calculated, and mobility of the additive with different chain length in crystal-solution system was evaluated by mean square displacement. Based on the study, a possible mechanism for the morphological evolution of ropivacaine crystals assisted by PVP and ultrasound was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号