首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
矩形喷口欠膨胀超声速射流对撞的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张强  陈鑫  何立明  荣康 《物理学报》2013,62(8):84706-084706
在不同喷口间距和射流压力下开展了矩形喷口欠膨胀超声速射流对撞实验并与自由射流进行了对比. 实验表明:超声速射流对撞的辐射噪声中存在四种不同的啸音模式, 且随喷口距离和射流压力的变化在不同模式间切换. 在射流压力大于0.5 MPa且喷口间距小于50 mm时, 射流对撞面在两个喷口外形成两道正激波之间, 啸音基频维持在3 kHz左右. 随喷口间距的增大或射流压力的降低, 射流对撞面在一侧喷口外的弓形激波与另一侧喷口外的正激波之间. 对撞面也有可能出现在两个弓形激波之间, 对应的啸音基频约为9 kHz, 但容易受扰动而回到喷口一侧或是在喷口之间大幅度振荡. 当射流压力小于0.36 MPa且喷口间距大于70 mm后, 对撞面在两个喷口之间大幅度振荡, 产生基频在1 kHz左右并随射流压力的降低和喷口间距的增大而降低的啸音. 关键词: 超声速射流 啸音 射流对撞 激波  相似文献   

2.
陈喆  吴九汇  陈鑫  雷浩  侯洁洁 《物理学报》2015,64(5):54703-054703
通过实验分析比较了对于相同高度不同宽度的四种矩形喷嘴, 当压力在0.2 MPa到0.8 MPa 之间变动时, 欠膨胀超音速自由射流的啸叫特性和对应的流场纹影结构.结果表明: 不同宽高比喷嘴的超音速自由射流辐射噪声中的单频离散啸叫存在两种不同的啸叫模式, 且随着射流压力的变化会出现模式间的切换.所谓模式切换是指不同模式的轮流占优和消失的现象.啸叫模式间的切换及占优区间的宽度随着喷嘴宽高比的减小而缩短.其中, 宽高比为2的射流啸叫模式中的一种模式所占的射流压降区间异常小, 此现象未在相关文献中提及; 喷嘴宽高比为4的射流啸叫占优区间内, 啸叫基频-射流压力曲线在0.49 MPa时出现了间断、跳跃现象.随着压力的降低激波纹影的轴线出现了抖动, 不同宽高比下流场结构的稳定性随压力变化的规律各异.射流压力在0.70 MPa到0.45 MPa区间内, 随着宽高比减小, 第一波节格栅的激波致密度减弱, 且出现轴向脉动, 第二波节后方的流场变得紊乱; 当射流压力低于0.45 MPa 时, 激波串结构随着宽高比的增大而趋于稳定, 在此压力区间内周期性激波格栅结构较射流压力在0.45 MPa以上时有所减弱.结合啸叫频谱及纹影图分析, 可初步认为, 第二、三波节也会对啸叫频率的声压幅值起到反馈增强作用.  相似文献   

3.
Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound.  相似文献   

4.
On the sound sources of screech tones radiated from choked circular jets   总被引:1,自引:0,他引:1  
The generation mechanism of the screech tone in the helical oscillation mode is mainly investigated using a series of instantaneous schlieren photographs. From the photographs, five evanescent sound sources are observed as prominent points along the jet axis. The sound source for the dominant helical oscillation mode is found to be the second prominent point which moves along a circular orbit in a plane perpendicular to the jet axis and just downstream of the rear edge of the third shock cell. It is shown that the speed of a moving sound source is supersonic and that the Mach cone generated by the moving sound source forms the helical-shaped wave front of the screech tone for the helical oscillation mode of the jet. This idea of the moving sound source is well supported by a measured directionality of the screech tone. Sound sources of the other oscillation modes appearing in the other pressure ratio ranges are also described.  相似文献   

5.
It has been found experimentally that broad band jet noise can be amplified by a pure tone excitation as much as 6 to 7 dB. The jet noise amplification effect takes place at sound pressure levels which are present in real aircraft engines. The experimental investigation was restricted to a cold jet at high subsonic Mach numbers excited by a plane sound wave coming from inside the nozzle. Based on a simplified mathematical model an attenuator has been constructed which is able to reduce the jet noise amplification significantly.  相似文献   

6.
Volumetric oscillation of multiple cavitation bubbles in an ultrasonic standing-wave field is investigated spatially through the intensity measurements of scattered light from bubbles changing the measuring position in the direction of sound propagation. When a thin light sheet finer than half of wavelength of sound is introduced into the cavitation bubbles, at an antinode of sound pressure the scattered light intensity oscillates. The peak-to-peak light intensity corresponds to the number of the bubbles which contribute to the sonochemical reaction because the radius for oscillating bubbles at pressure antinodes is restrictive in a certain range due to the shape instability and the action of Bjerknes force that expels from the antinode bubbles that are larger than the resonant size. The experimental results show that the intensity waveform of oscillating scattered light measured at the side near the sound source is similar to the waveform as seen in a single-bubble experiment. The peak-to-peak light intensity for the scattered light waveform is low at the side near the sound source where the progressive wave is dominant, while at the side near the water surface far from the sound source the intensity is relatively high and has periodic structure corresponding to the periodicity of half wavelength from the standing wave. These tendencies of high intensity near the water surface and the periodicity correspond to the periodic luminescent stripes seen in images of luminescence in an ultrasonic standing wave as reported by Hatanaka et al. [Jpn. J. Appl. Phys. 39 (2000) 2962]. The present method of light scattering is promising for evaluating spatial distribution of violently oscillating cavitation bubbles which effect sonochemical reactions.  相似文献   

7.
An experimental investigation into the sound-producing characteristics of moderately and highly underexpanded supersonic impinging jets exhausting from a round convergent nozzle is presented. The production of large plate tones by impingement on a square plate with a side dimension equal to 12 nozzle exit diameters is studied using random and phase-locked shadowgraph photography. Discrete frequency sound is produced in the near-wall region of the jet when a Mach disk occurs upstream of the standoff shock wave. Tones cease when the plate distance is approximately 2.2 free-jet cell lengths and the first and second shock waves are located in the free-jet positions. The production of impulsive sound appears to be associated with the collapse of the standoff shock wave during a portion of the oscillation cycle. Results from unsteady plate-pressure measurements indicate that plane-wave motion occurs in the impingement region and a secondary pressure maximum is observed on the plate adjacent to the flow region where sound appears to originate.  相似文献   

8.
付豪  姜根山 《应用声学》2018,37(1):180-186
该文基于声类比法,通过求解FW-H方程,对不同喷口与谐振腔位置关系的Hartmann哨的声场分布进行了分析,计算了不同位置关系的Hartmann哨的声指向性。得到了以下结论:喷口与谐振腔位置关系对Hartmann哨的发声基频几乎不产生影响。对称位置关系的Hartmann哨的声场呈对称趋势,且在垂直于喷流方向上达到最大;非对称位置关系的Hartmann哨不再呈现对称趋势。Hartmann哨的最大声压级随着偏离对称位置的距离的增加有小幅增加,最大声压级出现的方向向着谐振腔方向移动。  相似文献   

9.
超音喷流啸音发声机理的实验研究   总被引:5,自引:0,他引:5  
啸音是超音速喷流噪声的三大成分之一,其特点是向上游传播的离散纯音,被认为是飞机部件声疲劳的重要因素之一。但到目前为止,啸音仍是喷流噪声研究中理解最少、预测能力最低的成分,研究表明这主要是因为啸音受环境的影响很大,如啸音的强度就受到喷流马赫数、喷流温度、喷嘴唇口厚度以及形状等的影响。本文通过实验研究了在超音速喷流情况下喷嘴唇口厚度对啸音幅值、模态等的影响。实验结果表明,随着喷嘴厚度的增加,啸音的幅值增加达到了10 db以上。啸音的频率则随着唇口厚度的增加有所减小。  相似文献   

10.
The oscillatory motions of shocks in highly underexpanded jets with nozzle pressure ratios of 5.60, 7.47, 9.34, and11.21 are quantitatively studied by using large eddy simulation. Two types of shock oscillations are observed: one is the Mach disk oscillation in the streamwise direction and the other is the shock oscillation in the radial direction. It is found that the Mach disk moves quickly in the middle of the oscillatory region but slowly at the top or bottom boundaries. The oscillation cycles of Mach disk are the same for different cases, and are all dominated by an axisymmetric mode of 5.298 k Hz. For the oscillation in the radial direction, the shocks oscillate more toward the jet centerline but less in the jet shear layer, and the oscillation magnitude is an increasing function of screech amplitude. The cycles of the radial shock oscillation switch randomly between the two screech frequencies for the first two cases. However, the oscillation periodicity is more complex for the jets with high nozzle pressure ratios of 9.34 and 11.21 than for the jets with the low nozzle pressure ratios of 5.6 and 7.47. In addition, the shock oscillation characteristics are also captured by coarse mesh and Smagorinsky model,but the coarse mesh tends to predict a slower and weaker shock oscillation.  相似文献   

11.
驻波声场中悬浮临界密度及稳定性研究   总被引:1,自引:0,他引:1  
本文以声场中物体为研究对象,理论上得到行波和驻波场中的声辐射压力方程.在驻波声场中引入临界悬浮密度概念,可作为物体能否在非线性声场中悬浮的判据,同时给出谐振腔移动速度的最大范围.更进一步,以实验参数作为数值计算的输入来指导实验,并结合实验结果讨论了驻波声场中样品密度和大小、发射面和反射面形状以及两者之间的距离、反射面的尺寸等因素对物体悬浮稳定性的影响,发现当物体尺寸和密度确定时,调控好谐振腔的长度,增加波腹处的声压是提升声悬浮稳定性的有效手段.  相似文献   

12.
Results of theoretical and experimental investigations into a relativistic backward wave oscillator with a modulating resonant reflector are generalized. The modulating resonant reflector is used to reflect a counter propagating wave and guide it toward an electron collector. It is shown that premodulation of the electron beam near the reflector may have a significant effect on the starting conditions of oscillation; selective properties of the oscillator; and its efficiency, which may reach 40% when a high-current beam is transported by a strong magnetic field. In the reduced magnetic fields that were employed in the pulsed-periodic regime and were 1.5–2.0 times lower than those at which cyclotron resonance with the counter propagating wave is observed, the oscillator efficiency (30–35% at a wavelength of 8 mm) is limited by position and velocity spreads of particles. Mechanical pulsewise frequency tuning within about 10% at a repetition rate of 1–50 Hz and a multigigawatt microwave power, as well as a rise in the power and energy of microwave pulses via an increase in the cross-sectional dimensions of the slow-wave structure, are demonstrated to be feasible.  相似文献   

13.
The dynamical responses of XY ferromagnet driven by linearly polarised propagating and standing magnetic field wave have been studied by Monte Carlo simulation in three dimensions. In the case of propagating magnetic field wave (with specified amplitude, frequency and the wavelength), the low temperature dynamical mode is a propagating spin wave and the system becomes structureless (or random) in the high temperature. A dynamical symmetry breaking phase transition is observed at a finite (non-zero) temperature. This symmetry breaking is confirmed by studying the statistical distribution of the angle of the spin vector. The dynamic non-equilibrium transition temperature was found to decrease as the amplitude of the propagating magnetic field wave increased. A comprehensive phase boundary is drawn in the plane formed by temperature and amplitude of propagating field wave. The phase boundary was observed to shrink (in the low temperature side) for longer wavelength of the propagating magnetic wave. In the case of standing magnetic field wave, the low temperature excitation is a standing spin wave which becomes structureless (or random) in the high temperature. Here also, like the case of propagating magnetic wave, a dynamical symmetry breaking non-equilibrium phase transition was observed. A comprehensive phase boundary was drawn. Unlike the case of propagating magnetic wave, the phase boundary does not show any systematic variation with the wavelength of the standing magnetic field wave. In the limit of vanishingly small amplitude of the field, the phase boundaries approach the recent Monte Carlo estimate of equilibrium transition temperature.  相似文献   

14.
The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.  相似文献   

15.
万泉  张海滨  蒋伟康 《声学学报》2010,35(5):571-579
扩散声场会在反射边界附近形成干涉图样,研究方法包括平面波模型、简正模态分析、渐进模态分析等,但仅适用于尺度远大于声波波长的矩形声腔。提出一种预测扩散声场在非规则刚性壁面结构附近形成的干涉图样的数值方法,表明结构附近“受挡”声压的互谱矩阵取决于:(1)假定该结构在自由空间中振动辐射声音时其表面法向振速到表面及场点声压的边界元系数矩阵;(2)假定结构置于自由空间中且表面刚性时,点声源辐射声波入射到结构表面上产生的散射声场的边界元系数矩阵;(3)扩散声场均方声压。仿真表明,该途径预测的干涉图样与理论值完全吻合。该预测方法还可用于混响环境下声源附近直达声压均方值的空间分布估计,为混响环境下设备的声源定位提供帮助。   相似文献   

16.
朱卫卫  张秋菊  张延惠  焦扬 《物理学报》2015,64(12):124104-124104
采用单电子模型和经典辐射理论分别对低能和高能电子在线偏振激光驻波场中的运动和辐射过程进行了研究. 结果表明: 垂直于激光电场方向入射的低速电子在激光驻波场中随着光强的增大, 逐渐从一维近周期运动演变为二维折叠运动, 并产生强的微米量级波长的太赫兹辐射; 高能电子垂直或者平行于激光电场方向入射到激光驻波场中, 都会产生波长在几个纳米的高频辐射; 低能电子与激光驻波场作用中, 激光强度影响着电子的运动形式、辐射频率以及辐射强度; 高能电子入射时, 激光强度影响了电子高频辐射的强度, 电子初始能量影响着辐射的频率; 电子能量越高, 产生的辐射频率越大. 研究表明可以由激光加速电子的方式得到不同能量的电子束, 并利用电子束在激光驻波场的辐射使之成为太赫兹和X射线波段的小型辐射源. 研究结果可以为实验研究和利用激光驻波场中的电子辐射提供依据.  相似文献   

17.
Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic 'one-dimensional' sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2 MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.  相似文献   

18.
建立自由旋涡气动窗口全流场仿真模型,对大密封压比气动窗口的全流场展开数值研究,得到自由旋涡气动窗口的流场结构,发现大密封压比气动窗口形成的自由旋涡射流在光束输出通道内无明显的波系结构.根据模拟结果对自由旋涡气动窗口的性能进行优化,对自由旋涡喷管上壁面型线进行二次粘性修正.优化自由旋涡射流场后,激光器输出光束通道内压力分布稳定上升;增加扩压器外端壁吹气1.19MPa、内端壁吹气1.68MPa时,自由旋涡射流总能提高,气动窗口密封压力从37.5torr降低至6torr.该研究结果对自由旋涡气动窗口技术的发展具有参考意义.  相似文献   

19.
This paper elaborates upon a previous investigation into the influence of external electric and magnetic fields on a flow through a supersonic diffuser. The aim of the present study is to correlate a change in the configuration of a shock wave emerging near the diffuser inlet at magnetohydrodynamic interaction with the amount of force and energy actions and with total pressure losses. For this purpose, the main parameters of the shock wave structure and the total pressure are measured at the diffuser outlet when the flow is subjected to magnetic and electric fields of various strengths at different routes of current passage. In the experiments, a shock tube with a supersonic nozzle is employed. The shock tube forms a flow behind the shock wave reflecting from the end of the tube, which terminates in the nozzle. The diffuser is located directly downstream of the nozzle. The investigation is carried out in xenon. The flow is subjected to external fields at the inlet of the diffuser. The shock wave structure is visualized by frame sweeping of Schlieren patterns of the flow. The total pressure is measured with a piezoelectric transducer located at the end of the channel. The results obtained make it possible to optimize the action on the flow in terms of power consumption and total pressure losses for a given design of the diffuser.  相似文献   

20.
The characteristics of supersonic impinging jets are investigated using Particle Image Velocimetry (PIV). The purpose of the experiments is to understand the jet induced forces on STOVL aircraft while hovering close to the ground. For this purpose, a large diameter circular plate was attached at the nozzle exit. The oscillations of the impinging jet generated due to a feedback loop are captured in the PIV images. The instantaneous velocity field measurements are used to describe flow characteristics of the impinging jet. The important flow features such as oscillating shock waves, slipstream shear layers and large scale structures are captured clearly by the PIV. The presence of large scale structures in the impinging jet induced high entrainment velocity in the near hydrodynamic field, which resulted in lift plate suction pressures. A passive control device is used to interfere with the acoustic waves travelling in the ambient medium to suppress the feedback loop. As a consequence, the large scale vortical structures disappeared completely leading to a corresponding reduction in the entrainment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号