首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Recently, delay-induced coherence resonance (CR) in neuronal networks with fixed coupling strength has received much attention. In this paper, we study delay-induced CR in Newman-Watts neuronal networks with time-periodic coupling strength, mainly investigating how CR changes with the varying frequency of time-periodic coupling strength. We find that delay-induced CR become more frequent as the frequency is increased. When the frequency exceeds a threshold value, time delay can induce multiple CR more than for constant coupling strength. Furthermore, delay-induced CR occurs more abruptly and becomes more pronounced for time-periodic coupling strength than for constant coupling strength. These results show that delay-induced CR strongly depends on the coupling strength of neurons, and time delay can optimize spiking coherence more frequently and precisely in the presence of time-periodic coupling strength. This implies that time-periodic coupling strength could be more helpful for time delay to enhance and optimize the spiking coherence, and thus it may play a more efficient role in improving the time precision of information processing in neuronal networks.  相似文献   

2.
Zhi-Qiang Liu  Yu-Ye Li  Hua-Guang Gu  Wei Ren 《Physica A》2010,389(13):2642-2653
This paper reported multiple induction of spiral waves with a stochastic signal in a square lattice network model composed of type I Morris-Lecar (ML) neurons, where each neuron is coupled to its four nearest neighbors. The induction occurs in two or three distinct regions of noise intensity, and thus enables emergence of multiple spatial coherence in the network, demonstrating a novel evidence of multiple coherence resonance. Emergence of this multiple spatial coherence resonance was evidenced by calculating the degree of spatial complexity, spatial correlation length, spatial structure function, circular symmetry, and signal-to-noise ratio curves. The network was further characterized by spatial frequency and inherent spatial scale, reflecting its inherent ability to manifest ordered pattern formation under the driven of noisy signals.  相似文献   

3.
We investigate the algebraic structure of flat energy bands a partial filling of which may give rise to a fractional quantum anomalous Hall effect (or a fractional Chern insulator) and a fractional quantum spin Hall effect. Both effects arise in the case of a sufficiently flat energy band as well as a roughly flat and homogeneous Berry curvature, such that the global Chern number, which is a topological invariant, may be associated with a local non-commutative geometry. This geometry is similar to the more familiar situation of the fractional quantum Hall effect in two-dimensional electron systems in a strong magnetic field.  相似文献   

4.
We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks.  相似文献   

5.
Spatial coherence resonance in a spatially extended system that is locally modeled by Hodgkin-Huxley (HH) neurons is studied in this paper. We focus on the ability of additive temporally and spatially uncorrelated Gaussian noise to extract a particular spatial frequency of excitatory waves in the medium, whereby examining the impact of diffusive and small-world network topology that determines the interactions amongst coupled HH neurons. We show that there exists an intermediate noise intensity that is able to extract a characteristic spatial frequency of the system in a resonant manner provided the latter is diffusively coupled, thus indicating the existence of spatial coherence resonance. However, as the diffusive topology of the medium is relaxed via the introduction of shortcut links introducing small-world properties amongst coupled HH neurons, the ability of additive Gaussian noise to evoke ordered excitatory waves deteriorates rather spectacularly, leading to the decoherence of the spatial dynamics and with it related absence of spatial coherence resonance. In particular, already a minute fraction of shortcut links suffices to substantially disrupt coherent pattern formation in the examined system.  相似文献   

6.
We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.  相似文献   

7.
We study the collective temporal coherence of a small-world network of coupled stochastic Hodgkin-Huxley neurons. Previous reports have shown that network coherence in response to a subthreshold periodic stimulus, thus subthreshold signal encoding, is maximal for a specific range of the fraction of randomly added shortcuts relative to all possible shortcuts, p, added to an initially locally connected network. We investigated this behavior further as a function of channel noise, stimulus frequency and coupling strength. We show that temporal coherence peaks when the frequency of the external stimulus matches that of the intrinsic subthreshold oscillations. We also find that large values of the channel noise, corresponding to small cell sizes, increases coherence for optimal values of the stimulus frequency and the topology parameter p. For smaller values of the channel noise, thus larger cell sizes, network coherence becomes insensitive to these parameters. Finally, the degree of coupling between neurons in the network modulates the sensitivity of coherence to topology, such that for stronger coupling the peak coherence is achieved with fewer added short cuts.  相似文献   

8.
Recently, the phenomena of stochastic resonance (SR) have attracted much attention in the studies of the excitable systems under inherent noise, in particular, nervous systems. We study SR in a stochastic Hodgkin-Huxley neuron under Ornstein-Uhlenbeck noise and periodic stimulus, focusing on the dependence of properties of SR on stimulus parameters. We find that the dependence of the critical forcing amplitude on the frequency of the periodic stimulus shows a bell-shaped structure with a minimum at the stimulus frequency, which is quite different from the monotonous dependence observed in the bistable system at a small frequency range. The frequency dependence of the critical forcing amplitude is explained in connection with the firing onset bifurcation curve of the Hodgkin-Huxley neuron in the deterministic situation. The optimal noise intensity for maximal amplification is also found to show a similar structure.  相似文献   

9.
In this paper,we study spiking synchronization in three different types of Hodgkin-Huxley neuronal networks,which are the small-world,regular,and random neuronal networks.All the neurons are subjected to subthreshold stimulus and external noise.It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization.We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization.Only when the magnitude of the synaptic conductance is moderate,will the effect be considerable.However,if the synaptic conductance is small or large,the effect vanishes.As the connections between neurons increase,the synaptic conductance to maximize the effect decreases.Therefore,we show quantitatively that the noise-induced maximal synchronization in the Hodgkin-Huxley neuronal network is a general effect,regardless of the specific type of neuronal network.  相似文献   

10.
孙晓娟  陆启韶 《中国物理 B》2010,19(4):40504-040504
Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号