首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the magnetic susceptibility of one-dimensional S=1/2 antiferromagnets containing nonmagnetic impurities which cut the chain into finite segments. For the susceptibility of long anisotropic Heisenberg chain segments with open boundaries we derive a parameter-free result at low temperatures using field-theory methods and the Bethe ansatz. The analytical result is verified by comparing with quantum Monte Carlo calculations. We then show that the partitioning of the chain into finite segments can explain the Curie-like contribution observed in recent experiments on Sr2Cu(1-x)PdxO(3+delta). Possible additional paramagnetic impurities seem to play only a minor role.  相似文献   

2.
陈凌孚  王强华 《物理学报》1989,38(5):840-845
本文提出具有非磁性缺陷(nm1/2l<<1)的二维RKKY自旋玻璃模型,分别给出不同温区比热和磁化率的表达式.同时应用渗流理论分析转变温区自旋集团的行为,说明比热膝盖伏峰值和磁化率尖拐状峰值的实验事实. 关键词:  相似文献   

3.
In this paper, we use a new hybrid method to compute the thermodynamic behavior of the spin- 1 / 2 Kagome antiferromagnet under the influence of a large external magnetic field. We find a T2 low-temperature behavior and a very low sensitivity of the specific heat to a strong external magnetic field. We display clear evidence that this low-temperature magnetothermal effect is associated with the existence of low-lying fluctuating singlets, but also that the whole picture ( T2 behavior of C(v) and the thermally activated spin susceptibility) implies contribution of both nonmagnetic and magnetic excitations. Comparison with experiments is made.  相似文献   

4.
Under pressure and in several intermetallic compounds Ce exhibits a phase transition from the magnetic to the nonmagnetic state connected with the delocalisation of the 4felectron. We have measured the magnetic susceptibility of liquid La, Ce and Pr and of liquid alloys of Ce with normal metals and transition metals. In liquid alloys with La, Pr, Cu and Sn the Ce keeps its localized magnetic moment over the full range of concentration. In liquid alloys with Ni, Co and Rh, however a continuous transition of Ce into the nonmagnetic state is observed.  相似文献   

5.
The evolution of the Kondo effect and antiferromagnetic (AF) correlations with size reduction in CePt2 nanoparticles (3.1-26 nm) is studied by analysis of the temperature-dependent specific heat and magnetic susceptibility. The AF correlations diminish with size reduction. The Kondo effect predominates at small particle size with trivalent, small Kondo temperature (TK) magnetic regions coexisting with strongly mixed-valent, large TK nonmagnetic regions. We discuss the role of structural disorder, background density of states and the electronic quantum size effect on the results.  相似文献   

6.
The results of measuring the static and dynamic magnetic susceptibilities of several series of samples, which are based on the YbB12 Kondo insulator and are substituted in the rare-earth sublattice, are analyzed. Substitution is performed by nonmagnetic isoelectronic Lu ions; magnetic isoelectronic Tm ions; and nonisoelectronic nonmagnetic Y, Sc, and Zr ions. The static susceptibility is measured by a SQUID magnetometer in weak fields, and the dynamic susceptibility is determined from inelastic neutron scattering data. The magnetic properties are simulated using the spectral function found from neutron experimental data. A one-to-one correspondence is established between the influence of an impurity on the initial neutron spectrum and the temperature dependence of the static susceptibility. The results obtained allow one to analyze the relation between the magnetic properties and the electronic structure of the compounds of the given class.  相似文献   

7.
Measurements of the magnetic susceptibility of liquid Mn0.05—Cu—Al alloys up to 1700 K indicate Curie—Weiss like behaviour at the Cu-rich end and minima of the reciprocal Mn susceptibility values as a function of the temperature 1/ξMn(T) at the A1-rich end of the series. The occurrence of 1/ξMn(T) minima at temperatures, which are sensitively depending on the alloy composition, hints at a transition to localized magnetic moment behaviour even in the A1-based alloys at high temperatures. Both, the aspects of extremely increasing Kondo temperature and that of decreasing spin fluctuation times, allow to discuss the susceptibility behaviour uniformly for the whole alloy series. Thus, the results do not support a fundamental distinction (magnetic—nonmagnetic) between the alloy systems Cu—Mn and A1—Mn.  相似文献   

8.
We study the weak antilocalization (WAL) effect in topological insulator Bi(2)Te(3) thin films at low temperatures. The two-dimensional WAL effect associated with surface carriers is revealed in the tilted magnetic field dependence of magnetoconductance. Our data demonstrate that the observed WAL is robust against deposition of nonmagnetic Au impurities on the surface of the thin films, but it is quenched by the deposition of magnetic Fe impurities which destroy the π Berry phase of the topological surface states. The magnetoconductance data of a 5 nm Bi(2)Te(3) film suggests that a crossover from symplectic to unitary classes is observed with the deposition of Fe impurities.  相似文献   

9.
Studies of the structure and magnetic properties of layers formed on nonmagnetic substrates by laser powder fusing (LPF) showed that crystalline phases are separated from initial powders of bronze, inconel (IN 625), and PGSR-4with the transformation of nonmagnetic materials to soft ferromagnets. The fused bronze powder layer exhibits soft ferromagnetic properties with two types of magnetic domains with the Curie temperatures of 80 and 300 K and a coercivity to 90 Oe at 300 K; in layers based on In625 and PGSR-4, only one type of magnetic domains with the Curie temperatures of 260–270 K is formed, which provides soft ferromagnetic properties at 4 К and the paramagnetic transition at 300 K.  相似文献   

10.
We report, through 17O NMR, an unambiguous local determination of the intrinsic kagome lattice spin susceptibility as well as that created around nonmagnetic defects arising from natural Zn/Cu exchange in the S=1/2 (Cu2+) herbertsmithite ZnCu3(OH)6Cl2 compound. The issue of a singlet-triplet gap is addressed. The magnetic response around a defect is found to markedly differ from that observed in nonfrustrated antiferromagnets. Finally, we discuss our relaxation measurements in the light of Cu and Cl NMR data and suggest a flat q dependence of the excitations.  相似文献   

11.
Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses backscattering and protects the coherence of these states in the presence of nonmagnetic scatterers. In contrast, magnetic scatterers should open the backscattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon the adsorption of various magnetic and nonmagnetic impurities on the surface of Bi2Se3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both nonmagnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment.  相似文献   

12.
A theory of the local magnetic response of a nonmagnetic impurity in a doped antiferromagnet, as relevant to the normal-state in cuprates, is presented. It is based on the assumption of the overdamped collective mode in the bulk system and on the evidence that equal-time spin correlations are only weakly renormalized in the vicinity of the impurity. The theory relates the Kondo-like behavior of the local susceptibility to the anomalous temperature dependence of the bulk magnetic susceptibility.  相似文献   

13.
The spin transport as the current flows through an impurity in a one-dimensional conductor is analyzed. The interacting electrons are described in terms of the Luttinger liquid theory. Both the Coulomb and short-range interactions are considered; the latter appears when the gate screens the long-range part of the Coulomb potential. The cases of magnetic and nonmagnetic impurities are considered. It has been revealed that, for a magnetic impurity, the electric current flow induces the generation of the spin current, which has direct and alternating components. At low temperatures and voltages, the current can be completely spin-polarized. For a nonmagnetic impurity, the spin current generation is absent. The spin current flowing though the wire affects the current-voltage characteristic for both magnetic and nonmagnetic impurities. The results have been obtained for a rather strong electron-electron interaction.  相似文献   

14.
We report a high-resolution neutron diffraction study on the orbitally degenerate spin-1/2 hexagonal metallic antiferromagnet AgNiO2. A structural transition to a tripled unit cell with expanded and contracted NiO6 octahedra indicates sqrt[3]xsqrt[3] charge order on the Ni triangular lattice. This suggests charge order as a possible mechanism of lifting the orbital degeneracy in the presence of charge fluctuations, as an alternative to the more usual Jahn-Teller distortions. A novel magnetic ground state is observed at low temperatures with the electron-rich S=1 Ni sites arranged in alternating ferromagnetic rows on a triangular lattice, surrounded by a honeycomb network of nonmagnetic and metallic Ni ions. We also report first-principles band-structure calculations that explain microscopically the origin of these phenomena.  相似文献   

15.
Doping the high- T(c) superconductor YBa2Cu3O6.7 with 1.5% of nonmagnetic Zn impurities in CuO2 planes is shown to produce a considerable broadening of 63Cu NMR spectra, as well as an increase of low-energy magnetic fluctuations detected in 63Cu spin-lattice relaxation measurements. A model-independent analysis demonstrates that these effects are due to the development of staggered magnetic moments on many Cu sites around each Zn and that the Zn-induced moment in the bulk susceptibility might be explained by this staggered magnetization. Several implications of these enhanced antiferromagnetic correlations are discussed.  相似文献   

16.
We performed electrical resistivity ρ, magnetic susceptibility χ, specific heat C and electron diffraction measurements on single-crystalline samples of PrT2Zn20 (T = Ru, Rh and Ir). The three compounds show the Van Vleck paramagnetic behavior, indicating the nonmagnetic crystalline electric field (CEF) ground states. A Schottky-type peak appears at around 14 K, irrespective of the T element, which can be moderately reproduced by a doublet–triplet model. For T = Ru, a structural transition occurs at Ts = 138 K, below which no phase transition appears down to 0.04 K. On the other hand, for T = Ir, antiferroquadrupole (AFQ) ordering arising from the nonmagnetic Γ3 doublet takes place at TQ = 0.11 K. For T = Rh, despite a structural transition between 170 and 470 K, the CEF ground state is still the non-Kramers Γ3 doublet. However, no phase transition due to the Γ3 doublet was observed even down to 0.1 K.  相似文献   

17.
We study the two-dimensional Hubbard model with nonmagnetic Zn impurities modeled by binary diagonal disorder using quantum Monte Carlo within the dynamical cluster approximation. With increasing Zn content we find a strong suppression of d-wave superconductivity and an enhancement of antiferromagnetic spin correlations. T(c) vanishes linearly with Zn impurity concentration. The spin susceptibility changes from pseudogap to Curie-Weiss-like behavior indicating the existence of free magnetic moments in the Zn doped system. We interpret these results within the resonating-valence-bond picture.  相似文献   

18.
We report temperature and magnetic field dependent magnetization and quantification of entanglement from the experimental data for dichloro (thiazole) copper (II), a Heisenberg spin chain system. The plot of magnetic susceptibility vs. temperature indicates an infinite spin chain. Isothermal magnetization measurements (as functions of magnetic field) were performed at various temperatures below the antiferromagnetic (AFM) ordering, where the AFM correlations persist significantly. These magnetization curves are fitted to the Bonner–Fisher model. Magnetic susceptibility is used as an entanglement witness to quantify the amount of entanglement in the system.  相似文献   

19.
The magnetic properties of defects were studied in spin-gap magnets such as spin-Peierls magnet CuGeO3, Haldane magnet PbNi2V2O8, and charge-ordered ladder magnet NaV2O5. Doping of these systems with nonmagnetic impurities leads to additional magnetic degrees of freedom, which manifest themselves at low temperatures, where the intrinsic magnetic susceptibility of a spin-gap system is close to zero. Magnetic susceptibility appears due to the local destruction of the singlet ground state as a result of impurity-induced breakage of spin chains. Antiferromagnetically correlated areas arise near the spin-chain breaks. The sizes of these areas and the effective spin of these specific spin clusters are estimated. The order parameter and its spatially modulated depth are determined for impurity-induced magnetically ordered phases. The magnetic properties of defects for the NaV2O5 ladder structure are explained in the model of electrons “hopping” near the chain break. The hopping degree of freedom effectively influences the total spin of a spin-chain fragment and magnetization of the system.  相似文献   

20.
Effects of a magnetic field on the behaviors of TbVO4 which shows a cooperative Jahn-Teller phase transition have been investigated. The possibility that the system will return to the undistorted phase at low temperatures in a magnetic field is considered. We show that because of the weak coupling of the system to the magnetic field applied along the c-axis, the magnetic field required to see the transition of the crystal back to the undistorted phase is impractically high. Diluting the crystal with nonmagnetic ions is then a plausible approach in the study of this novel behavior of the system. We have also calculated the effects of a magnetic field applied in the basal plane and shown that the crystal would remain distorted for all temperatures except the cases when the field is applied along the crystallographic axes. Finally, we consider the effects of a magnetic field on the temperature behavior of the specific heat and show that the Schottky anomaly which occurs at a very low temperature (~1°K) will be shifted to a higher temperature by applying a magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号