首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific features of the triplet-triplet (T-T) transfer of electronic excitation energy in a gas phase upon nonequilibrium vibrational excitation of the triplet molecules of a donor were studied for an anthraquinone-diacetyl donor-acceptor pair using the time-resolved slow fluoresence of anthraquinone and sensitized phosphorescence of diacetyl. It is shown that in the gas phase, which allows regular control of the number of collisions, competition between the processes of T-T transfer and intermolecular vibrational relaxation is observed for nanosecond time resolution. The T-T transfer rate for the molecular system investigated exceeded the rate of intermolecular vibrational relaxation kV in the triplet state T1 of the donor. The effectiveness of the T-T transfer of energy by vibrationally excited molecules turned out to be higher than the effectiveness of transfer by thermalized ones, but even the highest of them was much less than unity. An increase in the equilibrium temperature of vapors led to a decrease in the effectiveness of transfer for both vibrationally excited and thermalized triplet molecules, thus indicating the importance of the collisional complex in the intermolecular process studied. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 4, pp. 474–479, July–August, 2000.  相似文献   

2.
The influence of temperature on the rate constants of photoinduced intermolecular electron transfer, representing the first stage of photoinduced reactions, has been investigated based on analysis of the quenching of fluorescence of carbazole vapor by halomethanes (CHCl3, CH2Br2, CCl4, CHBr3) and delayed fluorescence of benzophenone and anthraquinone vapors by aliphatic amines (diethylamine, dibutylamine, cyclohexylamine, triethylamine) and pyridine. It has been established that the rate constants of photoinduced electron transfer in different donor-acceptor pairs in the gas phase can increase or decrease with increase in the temperature from 433 to 623 K. The energies of activation and enthalpy of the fluorescence-quenching process have been determined. The interrelation between the rate constants of fluorescence quenching k q and the free energy of electron transfer G ET has been analyzed with account for the mean vibrational energy <E vib> of the interacting molecules. It is shown that positive and negative temperature dependences k q(T) are characteristic, respectively, of the regions of normal (k ET increases with decrease in G ET) and inverted (k ET decreases with decrease in G ET) changes in the rate constants caused by an increase in the exothermicity of the photoinduced electron transfer process.  相似文献   

3.
Intermolecular photoinduced electron transfer (PET) in a gas phase was studied using carbazole vapor fluorescence quenching by halomethanes (CHCl3, CH2Br2, CCl4, CHBr3). The fluorescence quenching rate constants k q changing from 2.3·105 sec–1·torr–1 in mixtures with CHCl3 to 4.6·106 sec–1·torr–1 in mixtures with CHBr3 at a constant temperature of 403 K were estimated. The dependence of the carbazole fluorescence decay rates in the presence of halomethanes on the free energy change G during transfer of the electron from carbazole to halomethanes is considered. It is suggested to take into account the influence of the vibrational energy of the carbazole molecule E vib and its temperature changes in estimation of the G values. The differences between PET in the gas and liquid phases were analyzed. It is found that for mixtures with CCl4 and CHBr3 the negative temperature dependence of k q is observed, when the decay rates and efficiencies of the intermolecular PET decreased with temperature increase in the range 403–573 K, i.e. these mixtures the electron transfer is not a barrier-restricted process.  相似文献   

4.
The intermolecular photoinduced reactions between triplet ketone molecules and aliphatic amines and pyridine are studied by the quenching of delayed fluorescence of anthraquinone and benzophenone vapors by diethylamine, dibutylamine, cyclohexylamine, triethylamine, and pyridine. In the temperature range 423–573 K, the delayed fluorescence quenching rate constants k q are estimated from changes in the decay rate constant and the intensity of delayed fluorescence upon increasing pressure of bath gases. It is ascertained that, in the gas phase, the mixtures under study exhibit both a negative and a positive dependence of k q on temperature, which indicates that some photoinduced reactions do not have activation barriers. The rate constant k q is shown to increase with decreasing ionization potential of the electron donors. This points to the importance of interactions with charge transfer in the photoreaction of triplet ketone molecules with aliphatic amines and pyridine in the gas phase. The relationship between k q and the change in the free energy ΔG upon the photoinduced intermolecular electron transfer, which is the primary stage of the photochemical reaction, is studied. It is shown that the dependence k q G) for the donor-acceptor pairs under study is described well by the Marcus equation, in which the average vibrational energies of the donor and acceptor are taken into account for the estimate of ΔG.  相似文献   

5.
The temperature dependences of the rate constants k TT and the efficiencies DA of triplet–triplet transfer of the energy of electronic excitation in a gas phase for a number of donor–acceptor pairs (benzophenone–diacetyl, anthraquinone–diacetyl, carbazole–diacetyl, and naphthalene–diacetyl) were studied. It is shown that for gas phase systems the k TT and DA constants can both increase and decrease with increase in the temperature over the range 360–510 K. To explain the temperature changes of the k TT values, the experimental rate constants were compared with those calculated by a classical model (Marcus' equation). In the temperature range under study, the influence of the average vibrational energy <E vib> of the donor and acceptor molecules was taken into account to estimate the free energy change G, which varied from 0.4 to –1.2 eV. It is established that the increase in k TT with temperature for certain gas-phase systems and decrease for others represent the typical, for a gas-phase system, transition from a normal region (increase in k TT) to an inverted one (decrease in k TT) with monotonic variation of G, including the temperature increase of <E vib> of the molecules.  相似文献   

6.
By the quenching of the delayed fluorescence (DF) of anthraquinone vapors by aliphatic amines (diethylamine, dibutylamine, cyclohexylamine) and pyridine the photoinduced processes proceeding with the participation of vibrationally excited triplet molecules of anthraquinone have been investigated. The DF quenchingrate constants K q varying from 1·106 sec–1·torr–1 in mixtures with diethylamine to 7·103 sec–1·torr–1 in mixtures with pyridine have been estimated. A correlation between the values of K q and the ionization potentials of foreign gases confirming the important role of interactions with charge transfer in the quenching of triplet molecules in the gas phase has been established. The influence of other relaxation processes on the DF quenching is considered. It is shown that the intermolecular vibrational relaxation in the T 1 triplet state leading to the establishment of relaxation equilibrium at a vibrational temperature T vib considerably increasing the medium temperature is the fastest process among the biomolecular processes (rate constants K col V > 106 sec–1·torr–1 > K q). The values of T vib and the vibrational energies E vib of the triplet molecules after the energy exchange in the collisional complex have been estimated. It has been concluded that the photochemical reaction yield is determined by the intermolecular processes proceeding in the T 1 state at a vibrational equilibrium characterized by high values of T vib. The influence of E vib of triplet molecules on the DF quenching rates at a photoinduced electron transfer is considered.  相似文献   

7.
Vibrational coupling between different kinds of molecules in liquid mixture is studied by multiplex coherent anti‐Stokes Raman spectroscopy (CARS). To identify vibrational coherence, fs‐probe with high time resolution and narrowband‐probe with high spectral resolution are adopted in CARS experiments. Using liquid nitromethane (NM) mixed with organic dye IR780 perchlorate as the sample, we can clearly observe the interference between different vibrational modes. The intermolecular vibrational interaction between NM and IR780 molecules results in the vibrational coherence transfer (VCT) in the form of a change of phase correlation. Compared with symmetric bending vibration of NO2, coherence transfer is found to be easier to take place between C―N bond of NM and vibrations of IR780, which indicates the selectivity of intermolecular vibrational interaction. The selectivity is deduced to be related to the coordination between intramolecular and collective motion of molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Oxygen quenching of excited triplet and singlet states of gas-phase anthracene and its derivatives that have similar energies of the lower triplet levels but widely different oxidation potentials (0.44 < Eox < 1.89 V) was studied. Quenching rate constants for singlet (kSO2) and triplet (kTO2) states in addition to the fraction of oxygen-quenched singlet and triplet states qS 1(T1O2 were determined from the decay rates, fluorescence intensities, and delayed fluorescence as functions of oxygen pressure. It was found that kSO2 values vary from 2·104 (9,10-dicyanoanthracene) to 1.2·107 sec−1·torr−1 (anthracene, 9-methylanthracene, 2-aminoanthracene) and kSO2 values from 5·102 to 1·105 sec−1·torr−1. The kSO2 values for anthracene, 9-methylanthracene, and 2-aminoanthracene, which have fast rates of interconversion from S1 to T1, are close to the rate constants for gas-kinetic collisions and are independent of the oxidation potentials (Eox). The quenching rate constants kSO2 for the other anthracene derivatives and kTO2 for all studied compounds decrease with increasing free energy of electron transfer ΔGET, which indicates the important role of charge-transfer interactions in the oxygen quenching of singlet S1- and triplet T1 states. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 36–42, January–February, 2008.  相似文献   

9.
By the spectral and kinetic characteristics of the luminescence of vapors of polyatomic molecules (anthracene, anthraquinone, fluorenone) initiated by selective IR multiphoton excitation (IR MPE) of molecules in the ground electronic state S 0 the relaxation processes proceeding under vibrational excitation of molecules to energies exceeding the energies of the lower excited electronic states have been investigated. The changes in the spectral and kinetic characteristics with increasing CO2 laser energy density and vapor P v and foreign gas pressure P FG are analyzed. They are similar to the characteristics obtained for normal fluorescence of these molecules with changing vibrational energy E vib content. On the basis of experimental data and model calculations it has been concluded that at the laser radiation densities used in the case of IR MPE the molecules reach energies considerably exceeding the energies of the electronic levels. It is shown that a nonadiabatic connection between the electronic states leads to the population of mixed electronic states isoenergetic to the vibrational levels of the ground electronic state and to emission of delayed luminescence spectrally identical to the normal luminescence of these molecules. It has been found that when high vibrational levels are populated, new relaxation channels, such as reverse electron relaxation, emission from high vibrational levels of the ground electronic state, and multiquantum vibrational energy transfer at collisions leading to a rapid establishment of vibrational equilibrium become important.  相似文献   

10.
We present the results of quantumchemical investigation of energy transfer in organic molecules and systems and the inferences drawn. The Förster theory has been subjected to a critical analysis in order that the energy transfer could be described in the context of the current theory of nonradiative transitions and the incorrectness of the basic premises of the Förster theory has been demonstrated. A new variant of the mechanism of electronic energy transfer on the basis of the theory of electron transitions and of the quantum mechanics of molecules has been suggested. It is shown that the interaction of the molecules of the donor and acceptor perturbs the electronic states of isolated molecules even before the excitation of the donor molecule. A characteristic feature of the manifestation of intermolecular interaction is the spatial delocalization of the wave functions of the electronic states of interacting molecules, leading to the possibility of occurrence of conventional photophysical processes with participation of the electronic states of various molecules of the bimolecular system. In experimental investigations, the result of the intermolecular nonradiative transition is recorded as evidence of the spatial transfer of the energy of electronic excitation from the donor molecule to the acceptor molecule.  相似文献   

11.
Results of experimental and theoretical research for three bichromophore molecules, trans-stilbene-CH2-coumarin 120 (I), 4-methylumbelliferone-CH2-UC 17, and 4-(3-fluoro)-methylumbelliferone-CH2-UC 17 (II, III), are presented. Schemes of photophysical processes in the bichromophore molecules based on quantum chemical calculations by the INDO method and theory of radiationless transitions in polyatomic organic molecules are suggested. After optical excitation to the strong donor absorption band, the fast internal conversion processes develop there. As a result, the molecule is found in the S 1 * -state localized on the acceptor moiety. It is shown that a mechanism of intramolecular transfer energy in bichromophores different from that proposed by Förster may be realized. Excitation energy, initially located on D, will be transferred from the donor moiety to the acceptor chromophore in convenience of the internal conversion process. The intramolecular electronic energy transfer from energy donor to energy acceptor may be interpreted as the internal conversion process. The rate constants of internal conversion are calculated.  相似文献   

12.
By the delayed fluorescence activated by direct multiphoton excitation of triplet molecules by CO2–laser radiation we have studied the prevailing deactivation pathways of triplet molecules with a high store of vibrational energy E vib. The dependences of the kinetic characteristics of delayed fluorescence on the presence of vapors and foreign gases have been used to estimate the rates and efficiencies of intermolecular vibrational relaxation in the vibrational quasi–continuum of the triplet state T 1. By the changes in the intensities and decay rates over a wide range of vibrational energies we have established the E vib dependences of reversible intercombination conversion between the states T 1 and S 1 and interconversion from T 1 to the ground electronic state S 0 for both the case of isolated excited molecules and at a steady vibrational temperature. It is shown that at high vibrational temperatures the radiationless transition from the T 1 state to S 0 has an activation character and is accomplished through the energy barrier. The conditions for going to an exponential dependence have been determined. It has been found that the obtained dependences are in good agreement with the known experimental results. The influence of molecular and environmental characteristics on the decay rate of triplet molecules is compared.  相似文献   

13.
Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N‐dimethylaniline (DMA) and sulfur dioxide (SO2). The formation of a deep red oil by the reaction of SO2 with DMA is an evidence of the charge transfer (CT) nature of the DMA–SO2 interaction. The DMA–SO2 normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm−1, which are enhanced when resonance is approached. These bands are assigned to νs(SO2) and ν(ϕ N) vibrational modes, respectively, confirming the interaction between SO2 and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO2 with the ring π electrons, which gives rise to a π–π* low‐energy CT electronic transition, as confirmed by time‐dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA–SO2 spectrum at the B3LYP/6‐311 + + g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Intensities and decay rates of delayed luminescence (DL) initiated by a pulse of N2 laser were employed to probe collisional relaxation of complex molecules (benzophenone, acetophenone) diluted with bath gases Ar, Kr, Xe, C2H4, SF6, C5H12. It was shown that vibrational relaxation can be interpreted in terms of two consecutive processes: vibration-vibration (V-V) and vibration-translation (V-T). The results clearly demonstrated that fast component of DL can be used to study V-V energy transfer. It was found that at relatively small internal energy the collisional efficiences of V-V process had the values typical for molecular processes in which supercollisions contribute. The average energies transferred per collision, (ΔE), well correlated with predictions of the simple ergodic collision theory of intermolecular energy transfer.  相似文献   

16.
向天翔  孙胜  龚顺生  王嘉铭 《物理学报》1990,39(10):1547-1554
本文介绍了采用可调脉冲激光技术和时间分辨色散荧光方法研究态-态碰撞动力学的实验过程。在实验中直接观测了处于电子振动激发态B3Πou+(v'=19)的碘分子在自碰撞事件中朝相邻振动态跃迁的衰变过程,得到态—态振动跃迁速率常数,kv(19→18)=(2.21±0.33)×10-11cm3s-1mol-1和kv(19 关键词:  相似文献   

17.
The mechanisms of photoluminescence excitation of Mn2+ ions in ZnS crystals have been investigated on the basis of complex analysis of the temperature dependences of the photoluminescence and photoluminescence-excitation spectra of ZnS:Mn crystals. The activation energy of a manganese luminescence center was estimated at Ea = 0.17 ± 0.05 eV. It is shown that Ea represents an energy band with a width ΔEa = 0.1 eV, within which a manganese luminescence center can experience radiationless recombination. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 6, pp. 788–793, November–December, 2005.  相似文献   

18.
The fine structure of the fundamental vibrational bands and some combination tones of fullerite C60 in its IR absorption and reflection spectra, as well as in Raman spectra, has been studied. This structure is due to the overlapping components of Davydov and isotopic splittings and the removal of vibrational degeneracy with symmetry lowering. It is shown that for IR F u (i) bands (i = 1–4) and low-frequency H g (1) and A g (1) bands in the Raman spectrum the splittings at room temperature exceed those for the low-temperature phase. The enhancement of intermolecular interaction at elevated temperatures is explained by the nonequilibrium vibrational excitation of the medium as a result of nonlinear interaction of vibrational modes and by the change in the electronic states.  相似文献   

19.
Irradiation of solids produces a microscopic nonequilibrium state in which the vibrational energy distribution function of the atoms deviates from the thermodynamically equilibrium function. Expressions are obtained for the nonequilibrium distribution function and for the frequencies of activational transitions of atoms out of a potential well. It is shown that the radiation stimulation of diffusion processes involves a deviation of the temperature dependences of the frequencies of transitions of the atoms out of positions of equilibrium from the Arrhenius law. Under subthreshold irradiation conditions the rate of diffusion processes is higher for atoms whose vibrations thermalize over long times and depends linearly on the irradiation intensity. Under above-threshold irradiation conditions the characteristics of cascade regions in solids — their sizes and the vibrational excitation energy of the atoms — can be determined by comparing the computed and experimental temperature dependences of the diffusion coefficient. Zh. Tekh. Fiz. 68, 67–72 (August 1998)  相似文献   

20.
Electron-transfer(ET) from organic sulfides to excited state rhenium(I)-based heteroleptic tricarbonyl complexes [Re(bpy)(CO)3(py)]+ (I) and [Re(bpy)(CO)3(ind))]+ (II) in acetonitrile solution is facile and luminescence quenching constants, kq, are in the range 105–108 M−1s−1. The detection of the sulfide radical cation in this system using time-resolved absorption spectroscopy is a direct evidence for the ET nature of the reaction. The kq values for the quenching of Re(I)-complexes with organic sulfides are analyzed with a scheme involving rate controlling electron transfer process. The measured rate constants for the electron transfer (ET) reaction are close to the values calculated from Marcus theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号