首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
氩气含量对空气介质阻挡放电发射光谱的影响   总被引:1,自引:0,他引:1  
利用介质阻挡放电实验系统测量了空气介质阻挡放电的发射光谱,研究了氩气含量对空气介质阻挡放电发射光谱的影响.在280~500 nm波长范嗣内,发现了氮分子第二正带系N2(C3∏u-B3∏g)的谱线和氮分子离子的第一负带系N2+(B3∑u+-X2∑g+)的谱线.在相同条件下加入10%氩气后,起始放电电压由26kV降低到23 kV,介质阻挡放电和发射光谱强度都增强,谱线的半宽明显加大.随氩气含量的增加,各个氮分子第二正带系谱线强度的变化趋势不同,而两条氮分子离子第一负带系谱线391.44和427.81 nm的光谱强度都是降低的.  相似文献   

2.
使用水电极介质阻挡放电装置,对比氩气与氩气/少量空气的混合气体以及空气与空气/少量氩气的混合气体放电的发射光谱,研究了氩气与空气相混合时气体放电中的能量传递过程。实验发现,当氩气中加入少量的空气时,氩原子谱线均变弱,说明空气中的氮分子对氩原子的各激发态具有猝灭作用。并且随着空气含量的增加,各谱线变弱的速率不同。越是与氮分子的激发电位接近的氩原子的激发态被猝灭的作用越明显。另一方面,当空气中加入少量氩气时,发现氮分子第二正带系和氮分子离子第一负带系的谱线均被增强。说明在空气/少量氩气放电中,氮分子的激发由于亚稳态氩原子的潘宁激发传能而增强。因此在氩气/空气混合气体放电中,气体成分及比例影响放电的发光特性和能量传输特性。  相似文献   

3.
大气压氩气/空气介质阻挡放电中分子振动温度   总被引:9,自引:3,他引:6  
使用水电极介质阻挡放电装置,在氩气和空气混合气体放电中,利用光谱方法测量了氮分子(C3Πu)的振动温度及其随空气含量的变化关系.计算中采用的是氮分子第二正带系(C3Πu→B3Πg)的发射谱线,顺序带组有:△v=-1,△v=-2和△v=-3.结果表明:大气压介质阻挡放电中氮分子振动温度范围为1 938~2 720 K,振动温度随空气含量的增加几乎是线性增加的.该工作对研究介质阻挡放电中等离子体的动力学过程具有重要意义.  相似文献   

4.
压强对空气/氩气介质阻挡放电中等离子体温度的影响   总被引:1,自引:0,他引:1  
使用水电极介质阻挡放电装置,在氩气和空气的混合气体放电中,利用发射光谱法,研究了电子激发温度和分子振动温度随气体压强的变化关系。通过氩原子763.51nm(2P6→1S5)和772.42nm(2P6→1S3)两条谱线强度比法计算电子激发温度;通过氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算氮分子的振动温度;对氮分子离子391.4nm和激发态的氮分子337.1nm两条发射谱线的相对强度进行了测量,以进一步研究电子能量的变化。实验表明,随着压强从20kPa增大到60kPa,电子激发温度减小,分子振动温度减小,氮分子离子谱线与激发态的氮分子谱线强度之比减小。  相似文献   

5.
采用光谱法,研究了氩气/空气混合气体介质阻挡放电中蜂窝斑图形成过程中等离子体参量的变化。实验发现,随着电压的增加,放电经历六边形点阵斑图及疏密点同心圆环斑图后,形成了蜂窝斑图。利用氮分子第二正带系(C~3Π_u→B~3Π_g)的发射谱线、氩原子763.26 nm(2P_6→1S_5)与772.13 nm(2P_2→1S_3)两条谱线强度比法和氩原子696.57 nm(2P_2→1 S_5)谱线的展宽,分别研究了上述三种斑图的分子振动温度、电子激发温度和电子密度。结果发现:蜂窝斑图的分子振动温度和电子激发温度均高于六边形点阵斑图相应的温度,但其电子密度却比后者的电子密度低。实验还通过电容法,测量了放电斑图的放电功率,发现蜂窝斑图的放电功率远远高于六边形点阵斑图的放电功率。工作结果对于研究介质阻挡放电自组织斑图的形成机制具有重要意义。  相似文献   

6.
采用发射光谱法,首次研究了等离子体参数及激发状态对介质阻挡放电六边形斑图稳定性的影响。在氩气/空气混合气体的介质阻挡放电中,随着电压的升高,放电丝直径增大,六边形斑图逐渐稳定,同时放电颜色由紫色逐渐变为灰白色,说明其等离子体状态及参数可能发生了变化。测量了六边形斑图放电过程中氮分子谱线和氩原子谱线相对于氩原子763.51 nm的相对强度、分子振动温度和电子激发温度随外加电压的变化。结果发现:氮分子谱线相对强度随电压增加而降低,氩原子谱线相对强度却升高;分子振动温度与电子激发温度均随电压增加而增大。这些现象表明:随着电压增大,电子能量增加。由此,氩原子激发增多,放电丝直径增大,介质表面上沉积的壁电荷面积增大,放电丝之间的相互作用增强,六边形斑图趋于稳定。  相似文献   

7.
通过介质阻挡放电产生的等离子体可与燃料中的烃类分子发生碰撞裂解反应,将燃料分子裂解生成更容易起爆的氢气和小分子烃类,能有效改善液体燃料连续旋转爆震发动机的起爆性能。该研究在真空仓中开展体积介质阻挡放电的丝状放电光谱测试,分析了大气压氩气环境下体积介质阻挡放电的电子激发温度和电子密度随加载电压的变化规律。丝状放电的电子激发温度通过波尔兹曼斜率法计算,电子密度采用斯塔克展宽法计算。发现发射谱线均由氩原子4p-4s能级跃迁产生;各谱线强度随加载电压的提高均呈上升趋势,且与电压基本呈线性关系;对于大气压丝状放电,加载电压对电子激发温度和电子密度没有明显影响作用,加载电压12.5~14.5 kV范围内,电子激发温度稳定在3 400 K附近,电子密度在1025 m-3量级。  相似文献   

8.
不同结构六边形斑图演化过程光谱特性   总被引:6,自引:6,他引:0       下载免费PDF全文
采用发射光谱法,研究了水电极介质阻挡放电中具有相同对称性的3种不同结构的六边形斑图演化过程的光谱特性。实验结果表明,随着外加电压的增加,放电首先形成六边形点阵斑图,然后是空心六边形斑图,最后是蜂窝六边形斑图。利用氩原子696.5 nm(2P_2→1S_5)谱线的展宽、氩原子763.2 nm(2P_6→1S_5)与772.1 nm(2P_2→1S_3)两条谱线强度比法和氮分子第二正带系(C~3Π_u→B~3Π_g)的发射谱线,研究上述3种斑图的电子密度、电子激发温度及分子振动温度。结果发现,随着外加电压的升高,六边形点阵斑图、空心六边形斑图和蜂窝六边形斑图的电子密度逐渐减小,而电子激发温度和分子振动温度逐渐增加。等离子体状态的改变直接影响着斑图的自组织。  相似文献   

9.
采用发射光谱法,研究了具有三层介质的介质阻挡放电中不同厚度气隙内微放电通道的等离子体参量的变化规律。与在传统的具有双层介质的介质阻挡放电系统中所产生的微放电通道不同,三层介质系统内微放电通道在光谱特性方面展现了完全不同的性质以及变化规律。实验发现,微放电通道在不同的放电气隙中具有不同的发光强度。利用氮分子第二正带系(C3Πu→B3Πg)的发射谱线以及对氮分子离子391.4nm谱线强度与氮分子394.1nm谱线强度之比的考察,实验进一步测量了氮分子(C3Πu)的振动温度以及电子平均能量分别随氩气含量以及在不同电压下的变化规律。结果表明,当外加电压一定时,厚气隙内形成的微放电丝在分子振动温度以及电子平均能量上均低于薄气隙微放电丝。并且它们都随着氩气含量的增加而降低。随着电压的逐步升高,厚气隙内的微放电丝在以上两种参量上均基本保持不变,而薄气隙内微放电丝则出现较为明显的升高。这表明具有三层介质的介质阻挡放电中薄气隙较厚气隙对电压更为敏感且在相同电压浮动内电场变化范围更大。  相似文献   

10.
仪器展宽对大气压等离子体电子密度测量的影响   总被引:2,自引:0,他引:2  
实验使用两台不同的单色仪,采用光谱线型法测量了大气压氩气介质阻挡放电中的电子密度.诊断结果表明,由于不同的单色仪其仪器加宽不同,仪器加宽对总的光谱线型有较大影响.通过考虑等离子体中的各种加宽机制,采用卷积和反卷积的方法对氩原子发射谱线线型进行了分析,从整个光谱线型中分离出Stark线型,排除了仪器加宽对最终诊断结果的影响.从而最终测量了大气压氩气介质阻挡放电中的电子密度.测量得到在大气压氩气介质阻挡放电中单个放电丝存在时,电子温度为10000K时,电子密度约为3.05-3.26×1021 m-3.此方法不仅可以应用在大气压介质阻挡放电中,还可以用于测量其它大气压等离子体电子密度.  相似文献   

11.
大气压氩气介质阻挡放电中的电子激发温度   总被引:8,自引:4,他引:4  
采用发射光谱强度比法,测量了大气压氩气介质阻挡放电(DBD)中的电子激发温度。实验在690~800nm的范围内测量了大气压氩气DBD的发射光谱,经分析发现这些谱线全部是氩原子的发射谱线。为了测量电子激发温度,选用相距较近的763.51nm(2P6→1S5),772.42nm(2P2→1S3)的两条光谱线。结果发现电子温度的范围为0.1~0.5eV,电子激发温度随电压的增加而增加,随流量的增加而减小。实验还发现氩气流动与非流动时电子激发温度有明显的差别。上述结果对介质阻挡放电在工业领域上的应用具有重要意义。  相似文献   

12.
在氩气/空气的混合气体介质阻挡放电中,首次在高温条件下观察到亮点和暗点共存的放电,比较了中心亮点及四周暗点放电的谱线频移,并测量了它们的振动温度。实验采用氩原子ArⅠ(2P2→1S5)的发射谱线测量谱线频移,采用氮分子第二正带系(C3Πu→B3Πg)的发射谱线测量振动温度。结果表明:中心亮点放电中的ArⅠ(2P2→1S5)谱线的频移大于四周的暗点放电谱线的频移,表明前者电子密度较高;四周的暗点的放电振动温度高于中心亮点放电的振动温度。  相似文献   

13.
Dong LF  Lü YH  Liu WY  Yue H  Lu N  Li XC 《光谱学与光谱分析》2010,30(12):3183-3185
利用平行管水电极介质阻挡放电装置,在氩气和空气混合气体中,得到了狭缝微放电等离子体。利用发射光谱法,研究了此放电中分子振动温度、分子转动温度和电子的平均能量随气体压强的变化。通过氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算了氮分子的振动温度;利用氮分子离子(N2+)的第一负带系(B2Σu+→X2Σg+)的发射谱线计算了氮分子的转动温度;测量了氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,研究了电子能量的变化。结果表明,当压强从60 kPa增大到100kPa,分子振动温度及分子转动温度均减小,氮分子离子谱线与激发态的氮分子谱线的强度之比亦减小。  相似文献   

14.
在狭缝微等离子体中,研究了Ar Ⅰ(2P2→1S5)光谱线的展宽和频移随放电参数的变化.为了测量谱线频移,采用低气压(10 Pa左右)氩气放电发射的Ar Ⅰ光谱线作为参考线.实验在氩气含量为99.92%的氩气/空气放电中,测量了气压从1×104Pa增大到6×104 Pa时Ar Ⅰ谱线的频移和展宽.结果表明随着气压的升高...  相似文献   

15.
在氩气/空气的混合气体近大气压介质阻挡放电中,首次观察到点状与线状放电共存的放电现象,测量比较了点状与线状放电的谱线频移和振动温度。谱线频移的测量利用的是氩原子ArⅠ(2P2→1S5)的发射谱线,振动温度的测量利用的是氮分子第二正带系(C3Πu→B3Πg)的发射谱线。结果表明:点放电中的ArⅠ(2P2→1S5)谱线的频移大于线放电谱线的频移,表明前者电子密度较高;而点放电振动温度低于线放电的振动温度。  相似文献   

16.
空气介质阻挡放电不同放电模式的光谱特性   总被引:1,自引:0,他引:1  
采用光谱方法,研究了空气介质阻挡放电中流光向类辉光转变时电子能量的变化。利用氮分子第二正带系(C3Πu→B3Πg)的发射谱线,测量了氮分子(C3Πu)的振动温度。通过考察氮分子离子391.4nm谱线强度与氮分子337.1nm谱线强度之比,研究了电子平均能量的变化。结果表明,流光向类辉光转变时,氮分子(C3Πu)的振动温度激增,氮分子离子391.4nm相对谱线强度突增,表明类辉光放电模式中电子能量比流光放电模式中电子能量高很多。实验还发现,气隙间距不同,这两种放电模式转变所对应的转变气压不同,但转变气压与气隙间距的乘积值保持不变。  相似文献   

17.
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two metastable states (N 2(A3∑u+), N2 (a1 ∑u-)) are taken into account. The model includes the particle continuity equation, the electron energy balance equation, and Poisson抯equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decreases.  相似文献   

18.
采用蒙特卡罗方法,模拟了N2非平衡态直流放电等离子体过程。计算了不同E/N条件下电子在氮气中的漂移速度,结果与实验数据符合得很好。模拟了电子激发态粒子数随E/N的变化关系。提出在介质阻挡放电研究和应用中,通过监测两条紫外谱线145和201nm强度之比来监测有效电场的方法。  相似文献   

19.
为了更加深入地了解氩气/空气等离子体射流内的电子输运过程及化学反应过程,通过针-环式介质阻挡等离子体发生器在放电频率10 kHz,一个大气压条件下对氩气/空气混合气进行电离并产生了稳定的等离子体射流。通过发射光谱法对不同峰值电压下氩气/空气等离子体射流的活性粒子种类、电子激发温度及振动温度进行了诊断。结果表明,射流中的主要活性粒子为N2的第二正带系、Ar Ⅰ原子以及少量的氧原子,其中N2的第二正带系的相对光谱强度最强、最清晰,在本试验的发射光谱中没有发现N+2的第一负带系谱线,这说明在氩气/空气等离子体射流中几乎没有电子能量高于18.76 eV的自由电子。利用Ar Ⅰ原子激发能差较大的5条谱线做最小二乘线性拟合对等离子体射流的电子激发温度进行了计算,得到大气压氩气/空气等离子体射流的电子激发温度在7 000~11 000 K之间。随峰值电压的增大,电子激发温度表现出先增大后减小的变化趋势,这说明电子激发温度并不总是随峰值电压的增长单调变化的。通过N2的第二正带系对等离子体振动温度进行了诊断,发现大气压氩气/空气等离子体射流振动温度在3 000~4 500 K之间,其随峰值电压的增大而减小,这意味着虽然峰值电压的提高可有效提高自由电子的动能,但当电子动能较大时自由电子与氮分子之间的相互作用时间将会缩短,进而二者之间的碰撞能量转移截面将会减小,从而导致等离子体振动温度的降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号