首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 278 毫秒
1.
Zinc oxide has become an important material for various applications. Commercially available zinc oxide single crystals and as-grown zinc oxide thin films have high surface roughness which has detrimental effects on the growth of subsequent layers and device performance. A chemical mechanical polishing (CMP) process was developed for the polishing of zinc oxide polycrystalline thin films. Highly smooth surfaces with RMS roughness <6 Å (as compared to the initial roughness of 26 ± 6 Å) were obtained under optimized conditions with removal rates as high as 670 Å/min. Effects of various CMP parameters on removal rate and surface roughness were evaluated. The role of pH on the polishing characteristics was investigated in detail.  相似文献   

2.
Zhanlong Ma  Lirong Peng  Junlin Wang 《Optik》2013,124(24):6586-6589
A new method of ultra-smooth uniform polishing was presented, which can avoid high-precision surface figure getting worse after ultra-smooth polishing. At first, the fundamental and process were introduced. Then the process was simulated with “Gauss” and “V” type removal function. It shows that there will be no significant influence on optical surface figure after ultra-smooth uniform polishing with any type removal function. To demonstrate the process, a high-precision Ø100 mm fused silica flat optical element was polished, which was prior figured by IBF. Its surface figure accuracy root-mean-square (rms) value is improved from initial 3.624 nm to final 3.393 nm, the mid-spatial frequency surface roughness rms value is improved from initial 0.477 nm to final 0.309 nm, and the high-spatial frequency surface roughness rms value is improved from initial 0.167 nm to final 0.0802 nm. At last, the surface quality of the lens was analyzed by power spectral density (PSD). The result indicates that the surface roughness of high-precision optical element could be improved by ultra-smooth uniform polishing method without the surface figure destroyed.  相似文献   

3.
Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 µm could be reduce to less than 1 µm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.  相似文献   

4.
Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.  相似文献   

5.
The sapphire substrates are polished by traditional chemical mechanical polishing (CMP) and ultrasonic flexural vibration (UFV) assisted CMP (UFV-CMP) respectively with different pressures. UFV-CMP combines the functions of traditional CMP and ultrasonic machining (USM) and has special characteristics, which is that ultrasonic vibrations of the rotating polishing head are in both horizontal and vertical directions. The material removal rates (MRRs) and the polished surface morphology of CMP and UFV-CMP are compared. The MRR of UFV-CMP is two times larger than that of traditional CMP. The surface roughness (root mean square, RMS) of the polished sapphire substrate of UFV-CMP is 0.83 Å measured by the atomic force microscopy (AFM), which is much better than 2.12 Å obtained using the traditional CMP. And the surface flatness of UFV-CMP is 0.12 μm, which is also better than 0.23 μm of the traditional CMP. The results show that UFV-CMP is able to improve the MRR and finished surface quality of the sapphire substrates greatly. The material removal and surface polishing mechanisms of sapphire in UFV-CMP are discussed too.  相似文献   

6.
Etching and chemical mechanical polishing (CMP) experiments of the MgO single crystal substrate with an artificial scratch on its surface are respectively performed with the developed polishing slurry mainly containing 2 vol.% phosphoric acid (H3PO4) and 10-20 nm colloidal silica particles, through observing the variations of the scratch topography on the substrate surface in experiments process, the mechanism and effect of removing scratch during etching and polishing are studied, some evaluating indexes for effect of removing scratch are presented. Finally, chemical mechanical polishing experiments of the MgO substrates after lapped are conducted by using different kinds of polishing pads, and influences of the polishing pad hardness on removal of the scratches on the MgO substrate surface are discussed.  相似文献   

7.
李宁  尹自强  田富竟 《应用光学》2014,35(1):116-121
鉴于光学零件高陡度凹曲面的抛光是光学加工的一个难题,轮带光学确定性抛光方法是解决此类零件抛光的有效方法之一;提出轮带光学抛光技术的原理和方法。研究了轮带光学抛光方法修形的可行性,采用五轴精密数控机床系统对一块直径Ф80 mm的K9玻璃平面样镜进行了修形试验,经过3次迭代修形使其面形精度均方根误差(RMS)由初始的0.109 提高到0.028 ,平均每次收敛率达到1.3。实验结果表明,应用轮带光学抛光技术进行光学镜面修形,面形收敛速度较快,加工精度较高。本实验验证了轮带光学抛光技术的修形能力,为高陡度光学零件的抛光提供了研究基础。  相似文献   

8.
铝合金表面的直接光学抛光实验   总被引:1,自引:0,他引:1       下载免费PDF全文
张艺  尹自强  尹国举 《应用光学》2014,35(4):675-680
单点金刚石车削铝合金表面具有较好的表面质量和精度,但车削纹路会产生散射现象,难以满足高品质光学系统要求。对铝合金表面进行直接光学抛光可以去掉表面产生的车削纹路,提高反射表面的光学性能,分析酸性条件下和碱性条件下的铝镜抛光原理,采用新型抛光盘与抛光液对单点金刚石车削后铝合金表面进行抛光实验。实验结果表明:通过合理控制工艺参数,能够消除铝合金表面残留的周期性车削刀纹,并且不会产生新的表面划痕,得到较好的铝镜光学表面质量,测得的铝镜表面粗糙度Ra=2.6 nm。  相似文献   

9.
抛光垫是化学机械抛光的重要组成部分,其磨损的非均匀性对被加工工件面型精度和抛光垫修整有重要影响。基于直线摆动式抛光方式,研究了抛光过程中抛光垫与工件的相对运动,建立了抛光垫磨损模型,分析了抛光工艺参数对抛光垫磨损及均匀性的影响。研究结果表明,工件与抛光垫的转速比为1.11,正弦偏心直线摆动形式,摆动幅度系数为2,摆动频率系数在0.1~0.2之间,抛光垫表面磨损更均匀,并根据抛光垫表面磨损特性优化了抛光垫形状。优化的抛光垫具有更好的面型保持性,延长了修整间隔,为抛光工艺设计提供理论指导。  相似文献   

10.
李攀  白满社  邢云云  严吉中 《应用光学》2014,35(6):1069-1074
以抛光垫抛光工艺为基础,研究出一套完整的新型无损边缘抛光工艺,成功实现了高精度光纤陀螺集成光学调制器LiNbO3芯片边缘的无损抛光。即在分析LiNbO3芯片边缘抛光过程中棱边损伤产生原因的基础上,提出3条解决措施:控制研抛浆料中的大颗粒;选择低亚表面损伤的抛光方式;抛光颗粒的大小接近或小于临界切削深度的2倍。加工工件棱边在1 500显微镜下观察无可见缺陷,芯片端面的表面粗糙度Ra0.8 nm,表面平面度优于/2,满足了LiNbO3芯片无损边缘抛光要求。同时,该工艺方法具有较大的推广应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号