首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 针对车载纯捷联惯性导航系统(SINS)导航精度随时间增长而降低的不足,提出了基于激光多普勒测速仪(LDV)这一新型速度传感器的组合导航方案。通过建立SINS/LDV组合导航系统的状态方程和量测方程,设计了系统的卡尔曼滤波器,并对组合导航系统进行了仿真模拟。结果表明:SINS/LDV组合方案能够有效减小SINS导航参数随时间的累积误差,可以实现全自主、高精度导航;当LDV测速精度为0.1%时,组合导航系统的位置精度提高了2个数量级,速度精度提高了1个数量级。  相似文献   

2.
基于激光测速仪的工作原理、测量特性,结合惯性导航系统的工作特点,提出一种实现车体自主高精度定位定向的组合方法。推导了用于车载组合定位定向的三波束激光测速仪误差模型,结合捷联惯导误差模型,选取了组合卡尔曼滤波器状态量,并推导了组合导航量测模型。最后针对这种基于激光测速仪的组合定位定向方法进行了仿真计算,列出了相关计算结果,仿真结果验证了这种方法的正确性。  相似文献   

3.
AR模型辅助SINS/GPS组合导航的实验研究   总被引:1,自引:1,他引:0  
激光陀螺的随机漂移噪声类似于白噪声,可以采用AR(2)模型进行数字滤波来减小其对激光陀螺精度的影响。首先介绍了AR模型,然后利用IMU单元三组陀螺信号的AR(2)模型给出了车载SINS/GPS组合导航系统误差模型,并在GPS的辅助下,对SINS/GPS组合导航进行了实验研究。最后利用Kalman滤波器对车载SINs/GPS组合导航实际测量数据进行了离线的半实物仿真。实验结果表明,采用AR(2)模型辅助的SINS/GPS组合导航系统能够得到较高的姿态精度,并能有效抑制速度误差的发散。  相似文献   

4.
周璐  郭超  钟颖  宋一铂 《应用声学》2015,23(7):2518-2520
初始对准精度是捷联惯导系统的主要误差来源之一。针对舰载机捷联惯导的传递对准模型准确建模困难,且测量噪声和过程噪声随舰船动态而变化,这样就会降低滤波的精度,卡尔曼滤波有一定的局限性,提出了将小波神经网络辅助卡尔曼滤波器用于惯导系统的传递对准。把能直接影响卡尔曼滤波估计误差的参数作为网络的输入,进过样本训练后,把网络的输出与经过卡尔曼滤波得到的结果相加,实现了捷联惯导的传递对准的滤波功能。这种新算法在实际应用中的非线性情况下优于传统卡尔曼滤波方法。仿真结果表明了其实用性和有效性。  相似文献   

5.
激光陀螺滤波评估方法研究   总被引:1,自引:1,他引:0  
在现有硬件的基础上,通过滤波等软件算法来提高激光陀螺捷联惯导系统对准和导航精度是目前国内外学者所公认的。为了对激光陀螺滤波前后的效果进行准确、定量的评估,设计了Allan方差分析算法,开发了对准-导航及精度分析评估软件,分别从元件级、系统级对其展开了研究,并结合具体激光陀螺捷联惯导设备对其进行了实验验证。  相似文献   

6.
王锦  刘鹏  尹川  连强强 《应用声学》2016,24(3):267-269
针对单一导航导航系统在导航精度、稳定性、设备成本以及导航信息完备性等方面的局限性,设计了卫星导航/惯性导航组合导航系统。针对GPS导航系统受制于人及北斗导航系统发展尚不完善的特点,提出了基于北斗/GPS/SINS的军用机载组合导航系统软硬件设计。搭建了北斗/GPS/SINS组合导航系统硬件平台,采用基于不确定度的加权平均数据融合算法提高组合导航系统的导航可靠性和准确性。仿真结果表明,该组合导航系统稳定性好,可靠性高,定位准确。  相似文献   

7.
区间衍生粒子滤波器   总被引:1,自引:0,他引:1       下载免费PDF全文
宁小磊  王宏力  张琪  陈连华 《物理学报》2010,59(7):4426-4433
针对非线性、非高斯环境下具有不确定动态模型参数的系统状态估计问题,提出了一种新颖的区间衍生粒子滤波算法.该算法利用区间滤波生成的重要性密度函数,在系统状态转移概率密度的基础上,融入最新的系统观测数据,从而提高了对系统状态后验概率的逼近程度.为了进一步提高算法的实时性,提出一种类似光子衍射的粒子衍生过程,进而缓解了滤波精度与运算量之间的矛盾.通过陀螺/星敏感器组合定姿问题验证了该算法的有效性和鲁棒性.  相似文献   

8.
A matrix Kalman filter (MKF) has been implemented for a navigation system using point-based visual and inertial sensors. The observability conditions have been proved by the observability rank criterion based on Lie derivatives. The conditions are: (a) at least one degree of rotational freedom is excited and (b) at least three observed points are not collinear where any two points are linearly independent. Experimental results have demonstrated that the proposed algorithm obtains the same accurate as the line-based algorithm.  相似文献   

9.
马号  熊剑  郭杭  衷卫声  王娜 《应用光学》2016,37(2):162-167
针对惯性系统(INS)与卫星组合导航容易受到干扰的局限性,为提高海上作战船舰的自主导航能力,提出基于全天域大气偏振光特性辅助定向自主导航方法。在分析全天域偏振光中性点的运动规律的基础上,采用两点一线原理使用中性点确定载体航向角并结合电磁计程仪(LOG)测得的航速信息辅助惯性系统进行导航,采用卡尔曼滤波最优算法对组合导航系统进行了信息融合。matlab仿真结果表明基于全天域偏振光中性点/LOG/INS组合导航方法能够有效抑制INS导航定位误差,使船舰航向角误差稳定在0.6,水平速度误差稳定在0.7 m/s,水平位置误差稳定在10 m,增强了船舰的自主导航性能,并且具有高度的隐蔽性和抗干扰能力,具有一定的军事工程应用价值  相似文献   

10.
针对研制的新型模态切换水下机器人(Mode-Converted ROV, MC-ROV),设计了一套以MEMS器件为主的微惯性组合导航系统,包括陀螺仪、加速度计、磁力计、深度传感器及微处理器等。系统采用互补滤波方法抑制陀螺漂移,设计卡尔曼滤波器计算姿态角。本文采用了改进的自适用卡尔曼滤波器,增大新近数据的作用,减小陈旧数据的作用,避免滤波发散,提高导航精度。水池实验表明结合互补滤波、自适应卡尔曼滤波能够获得比较精确、稳定的水下机器人导航信息。同时,基于实测数据进行的算法仿真表明改进后的渐消记忆指数加权自适应卡尔曼滤波可以在一定程度上改善导航效果。  相似文献   

11.
针对组合导航系统中使用单天线GPS接收机时导致姿态角不易收敛的问题,提出了一种互补滤波器和卡尔曼滤波器相结合的数据融合算法。该方法首先通过MEMS惯性传感器与磁强计设计了一种互补滤波算法。针对载体在变速运动过程中加速度计的倾角测量值有较大误差,影响互补滤波器输出精度的问题,通过GPS接收机和加速度计设计了卡尔曼滤波模型,将卡尔曼滤波器输出速度的微分量反馈给互补滤波器,实现了对互补滤波器中载体运动加速度的补偿。基于以上解算方法,以FPGA为核心处理器设计了组合导航系统并进行了车载实验。实验中,该方法有效补偿了汽车变速过程中的倾角测量误差,证明了该方法的有效性。  相似文献   

12.
为了提高MEMS陀螺输出角速度的精度,采用Allan分析法以及Kalman滤波算法对MEMS陀螺仪进行随机误差分析和补偿。由Allan方差分析陀螺的输出数据,对Allan方差进行最小二乘法拟合,得到各项随机噪声的定量评价指标;对陀螺的输出数据使用AR模型进行数学建模,采用AIC准则确定了AR模型的阶次,建立了陀螺零漂数据的离散时间表达式;在AR模型所建立的陀螺随机误差模型的基础上,设计了Kalman滤波器,对陀螺输出数据使用Kalman算法进行了滤波处理,对陀螺的随机误差进行了补偿;通过Allan方差对Kalman算法对陀螺随机误差的补偿效果进行分析。实验结果表明:角速率随机游走Kalman滤波前为槡0.148 7°/h~(1/2),Kalman滤波补偿后为槡0.004 1°/h~(1/2),,通过补偿可减小97.24%的角速率随机游走误差;零偏不稳定性Kalman滤波前为1.940 8°/h,Kalman滤波补偿后为0.054 2°/h,通过补偿可减小97.21%的零偏不稳定性误差;速率随机游走Kalman滤波前为2.698 5°/h~(3/2),Kalman滤波补偿后为0.334 3°/h~(3/2),通过补偿可减小87.61%的速率随机游走误差。Kalman滤波适用于MEMS陀螺的滤波处理,可有效降低陀螺的随机误差。  相似文献   

13.
As a basic velocity, DVL is introduced in the navigation solution process of Fiber Optic Gyro Strapdown Inertial Navigation System (FOG SINS). According to the special application background, DVL error is unavoidable to be introduced to navigation information that is calculated by FOG SINS. Firstly, the effect of DVL error on steady-state error of misalignment angles is derived. Secondly, the estimation method of DVL error is proposed: the DVL velocity error is calculated by attitude information, which is resolved respectively from compass solution method and inertial navigation solution method. At last, both simulations and ocean experiments verify the feasibility of the method.  相似文献   

14.
Haitao Zhang  Yujiao Zhao 《Optik》2011,122(9):777-781
This paper proposes several nonlinear filtering algorithms based on the global positioning system (GPS) and the dead reckoning (DR). To achieve high location and velocity accuracy, the first-order extended Kalman filter (FEKF), the second EKF (SEKF) and EKF-Rauch-Tung-Striebel (EKF-RTS) smoother are introduced for GPS/DR integrated navigation system. And the algorithms of the FEKF, SEKF and EKF-RTS are given. Furthermore, the state models and measurement models of GPS/DR are set up. For comparison purpose, the GPS/DR integrated navigation system based on the three algorithms is simulated, and the algorithm performance is analyzed and compared by the simulation results of FEKF, SEKF, FEKF-RTS and SEKF-RTS. Numerical results demonstrate that the EKF-RTS gives clearly better estimates than the FEKF and SEKF.  相似文献   

15.
蔡鸣  孙秀霞  徐嵩  刘希  刘日 《应用光学》2015,36(3):343-350
为提高无人机自主着陆过程中导航系统的自主性与精确性,设计了一种视觉辅助惯导组合导航方法。该方法以惯导误差方程为过程方程,以着陆过程中单目摄像机2个时刻所得地面特征点投影之间的双视图几何约束为量测方程,构建了非线性滤波器;利用SR-UKF方法实现了惯导误差估计,提高算法效率的同时有效地避免了UKF中由于矩阵开方运算导致的滤波失效;最后根据估计结果校正了惯导导航数据。仿真结果表明:该方法能够提高导航系统精度,使误差降低到惯导系统的8%左右。  相似文献   

16.
针对INS/GPS组合导航系统中噪声统计特性不准确时,现有的卡尔曼滤波工作性能会降低的问题,提出了一种基于粒子滤波的INS/GPS组合导航滤波算法。仿真结果表明该算法能有效降低统计特性不准确对系统造成的不利影响。  相似文献   

17.
光纤陀螺随机误差建模与滤波方法研究   总被引:2,自引:0,他引:2  
提出了一种适用于高精度光纤陀螺的静态输出信号建模的时间序列模型,建立了光纤陀螺随机误差的卡尔曼滤波器。结果表明,该建模和滤波方法有效地减小了FOG的误差,明显地降低了陀螺的随机漂移,提高了导航精度,具有较好的实用价值。  相似文献   

18.
实时运动结构重建在自主导航系统中的应用   总被引:1,自引:0,他引:1  
实时运动结构重建是自主车辆、机器人导航、空间探测器自主降落、智能监控等领域中的重要研究课题。目前实时运动结构重建主要存在着特征匹配困难、鲁棒性差、系统无法自动获取初始参数和需要大量人工干预等诸多问题。利用高速CMOS摄像机与惯性传感数据融合提高了运动结构重建算法的精度及其鲁棒性。该算法在扩展卡尔曼滤波框架下是通过融合惯性与视觉传感器的数据来进行运动估计的。对场景中的每一个待估计结构的特征点建立对应的卡尔曼滤波器,以估计其空间三维结构信息。运动估计模块与结构估计模块交替运行,减小了系统运算的复杂度,提高了实时性能。通过对真实场景图像序列的实验验证结果表明,惯性传感器的额外信息能够有效地提高运动结构估计的精度,能够增强算法的鲁棒性。  相似文献   

19.
激光捷联惯导系统高程通道滤波模型设计   总被引:1,自引:1,他引:0  
针对传统航位推算算法中里程计俯仰安装误差角难以精确辨识,以及高程通道定位精度较差等问题,提出利用高度计作为辅助手段的激光捷联惯导/航位推算/高度计组合导航算法,并设计了高程通道的滤波模型。该算法基于Kalman滤波最优估计理论,利用气压高度计量测信息对SINS/DR组合系统高程通道进行估计补偿,以达到高程通道精确定位的目的。试验表明,经高度阻尼后系统高程定位精度达到3m。  相似文献   

20.
A novel rapid transfer alignment algorithm for laser strapdown inertial navigation system (SINS) is studied. Transfer alignment have typically relied on velocity measurements from the master SINS as the source of alignment information, but lever arm error must be compensated accurately while velocity information is utilized, all most every quaternion based error model is nonlinear, so nonlinear filtering algorithms are need, suffering from computational complex and large error. Aim at these problems, a novel improved rapid transfer alignment algorithm formulation is presented, applying quaternion to built the process and measurement models, the improvement employs a special manipulation of the measurement equation results in a linear pseudo-measurement equation, thus the classical linear Kalman filter is employed to estimate the state, need not lever arm error compensation, results in the reduce of computational burden. Observability analysis of this new transfer alignment algorithm has been done based on the piece-wise constant system (PWCS) method, results show that the presented algorithm can accomplish the initial alignment task perfectly. A transfer alignment simulation system is also developed for the evaluation and analysis of the presented algorithm, simulation results are confirmed with the theoretical conclusion, which can achieve the transfer alignment accuracy about 1 mrad within 10 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号