首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Phonation threshold pressure has previously been defined as the minimum lung pressure required to initiate phonation. By modeling the dependence of this pressure on fundamental frequency, it is shown that relatively simple aerodynamic relations for time-varying flow in the glottis are obtained. Lung pressure and peak glottal flow are nearly linearly related, but not proportional. For this reason, traditional power law relations between vocal power and lung pressure may not hold. Glottal impendance for time-varying flow should be defined differentially rather than as a simple ratio between lung pressure and peak flow. It is shown that the peak flow, the peak flow derivative, the open quotient, and the speed quotient of inverse-filtered glottal flow waveforms all depend explicitly on phonation threshold pressure. Data from singers are compared with those from nonsingers. The primary difference is that singers obtain two to three times greater peak flow for a given lung pressure, suggesting that they adjust their glottal or vocal tract impedance for optimal flow transfer between the source and the resonantor.  相似文献   

2.
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.  相似文献   

3.
In this study we have simultaneously measured subglottic air pressure, airflow, and vocal intensity during speech in nine healthy subjects. Subglottic air pressure was measured directly by puncture of the cricothyroid membrane. The results show that the interaction between these aerodynamic properties is much more complex that previously believed. Certain trends were seen in most individuals, such as an increase in vocal intensity with increased subglottic air pressure. However, there was considerable variability in the overall aerodynamic properties between subjects and at different frequency and intensity ranges. At certain frequencies several subjects were able to generate significantly louder voices without a comparable increase in subglottic air pressure. We hypothesize that these increases in vocal efficiency are due to changes in vocal fold vibration properties. The relationship between fundamental frequency and subglottic pressure was also noted to vary depending on vocal intensity. Possible mechanisms for these behaviors are discussed.  相似文献   

4.
Geometry of the human vocal folds strongly influences their oscillatory motion. While the effect of intraglottal geometry on phonation has been widely investigated, the study of the geometry of the inferior surface of the vocal folds has been limited. In this study the way in which the inferior vocal fold surface angle affects vocal fold vibration was explored using a two-dimensional, self-oscillating finite element vocal fold model. The geometry was parameterized to create models with five different inferior surface angles. Four of the five models exhibited self-sustained oscillations. Comparisons of model motion showed increased vertical displacement and decreased glottal width amplitude with decreasing inferior surface angle. In addition, glottal width and air flow rate waveforms changed as the inferior surface angle was varied. Structural, rather than aerodynamic, effects are shown to be the cause of the changes in model response as the inferior surface angle was varied. Supporting data including glottal pressure distribution, average intraglottal pressure, energy transfer, and flow separation point locations are discussed, and suggestions for future research are given.  相似文献   

5.
Measurements were made of intraoral air pressure and oral flow of ten native speakers uttering word pairs contrasting Korean fortis and lenis voiceless stop consonants in initial position. The production of fortis stops was found to be characterized by a higher intraoral pressure before release, yet a lower oral flow after release, than corresponding lenis stops. Possible reasons for this difference were explored with the use of a computer implemented aerodynamic model, giving an output of air pressure and flow. Input parameters were adjusted in accordance with known or hypothesized variations in glottal area function, vocal tract wall tension, respiratory muscle force, and supraglottal cavity volume, as given in the literature. In addition to the previously known differences in glottal area, it is inferred from the results of the modeling experiment that fortis stops are produced with greater vocal tract wall tension than lenis stops. Speaker-specific production strategies such as larynx lowering and heightened subglottal pressure during fortis stops and differences noted between word pairs are also discussed.  相似文献   

6.
Simulation of glottal volume flow and vocal fold tissue movement was accomplished by numerical solution of a time-dependent boundary value problem, in which nonuniform, orthotropic, linear, incompressible vocal fold tissue media were surrounded by irregularly shaped boundaries, which were either fixed or subject to aerodynamic stresses. Spatial nonuniformity of the tissues was of the layered type, including a mucosal layer, a ligamental layer, and muscular layers. Orthotropy was required to stabilized the vocal folds longitudinally and to accomodate large variations in muscular stress. Incompressibility and vertical motions at the golttis played an important role in producing and sustaining phonation. A nominal configuration for male fundamental speaking pitches was selected, and the regulation of fundamental frequency, intensity, average volume flow, and vocal efficiency was investigated in terms of variations around this nominal configuration. Parameters which were varied consisted of geometrical factors such as length, thickness, and depth, factors for shaping the glottis, as well as tissue elasticities, tissue viscosities, and subglottal pressure. Since nonlinear stress-strain properties were not included, subglottal pressure did not produce a pronounced effect upon fundamental frequency under these somewhat edealized conditions F0 rasing correlated strongly with increased tension in the ligament, and somewhat with increasing tension in the vocalis. F0 lowering correlated with increase in vocal fold length when the tensions were held constant, but not with increase in vocal fold thickness. Vocal intensity and efficiency are shown to have local maxima as the configurational parameters are varied one at a time. It appears that oral acoustic power output and vocal efficiency can be maximized by proper adjustments of longitudinal tension of nonmuscular (mucosal and ligamental) tissue layers in relation to muscular layers. Quantitative verification of the "body-cover" theory is therefore suggested, and several further implications with regard to control of the human larynx are considered.  相似文献   

7.
In this study, we evaluated the relationship between laryngeal function measures and glottal gap ratio and normalized measures of supraglottic behaviors in patients with unilateral vocal fold paresis (UVFP). Thirty-one patients were found to have unilateral vocal fold paresis by videoendoscopy and laryngeal electromyography, and 13 controls participated in this study. Patients with UVFP demonstrated significantly larger glottal gap ratios (p = 0.016) than control subjects. The nonparalyzed or contralateral vocal fold was associated with significantly more static false vocal fold compression (p = 0.03) compared with the paralyzed vocal fold or with the controls. Patients with unilateral vocal fold paresis were divided into subgroups: those with normal or abnormal maximum phonation time, flow, or pressure measures. Smaller glottal gap ratios were identified in patients with normal maximum phonation times and flow measures. Greater false vocal fold activity was identified in unilateral vocal fold paresis patients with normal laryngeal function measures than in unilateral vocal fold paresis patients with abnormal measures. These findings suggest that some patients with documented unilateral paresis and glottal incompetence can compensate for vocal fold weakness such that their acoustic and aerodynamic measures are normal.  相似文献   

8.
Measurements of air pressure and flow were made using an in vivo canine model of the larynx. Subglottic pressures at varying flow rates were taken during phonation induced by laryngeal nerve stimulation. Results showed that during constant vocal fold stiffness, subglottic pressure rose slightly with increased air flow. The larynx in the in vivo canine model exhibited a flow-dependent decrease in laryngeal airway resistance. Increasing flow rate was associated with an increase in frequency of phonation and open quotient, as measured glottographically. Results from this experiment were compared with a theoretical two-mass model of the larynx and other theoretical models of phonation. The influence of aerodynamic forces on glottal vibration is explained by increased lateral excursion of the vocal folds during the open interval and shortening of the closed interval during the glottal cycle.  相似文献   

9.
Spectral measures of the glottal source were investigated using an excised canine larynx (CL) model for various aerodynamic and phonatory conditions. These measures included spectral harmonic difference H1-H2 and spectral slope that are highly correlated with voice quality but not reported in a systematic manner using an excised larynx model. It was hypothesized that the acoustic spectra of the glottal source were significantly influenced by the subglottal pressure, glottal adduction, and vocal fold elongation, as well as the resulting vibration pattern. CLs were prepared, mounted on the bench with and without false vocal folds, and made to oscillate with a flow of heated and humidified air. Major control parameters were subglottal pressure, adduction, and elongation. Electroglottograph, subglottal pressure, flow rate, and audio signals were analyzed using custom software. Results suggest that an increase in subglottal pressure and glottal adduction may change the energy balance between harmonics by increasing the spectral energy of the first few harmonics in an unpredictable manner. It is suggested that changes in the dynamics of vocal fold motion may be responsible for different spectral patterns. The finding that the spectral harmonics do not conform to previous findings was demonstrated through various cases. Results of this study may shed light on phonatory spectral control when the larynx is part of a complete vocal tract system.  相似文献   

10.
Thyroplasty type I is one of several surgical treatments in which improving the voice of unilateral vocal fold paralysis is the ultimate objective. The goal of the surgery is the medialization of the paralyzed vocal fold. The purpose of this study is to evaluate the effectiveness of thyroplasty type I through acoustical analysis, aerodynamic measures, and quantitative videostroboscopic measurements. We report on 20 patients with unilateral vocal cord paralysis who underwent thyroplasty type I. We performed preoperative and postoperative video image analysis (normalized glottal gap area) and computer-assisted voice analysis (fundamental frequency, jitter, shimmer, noise-to-harmonic ratio, mean phonation time, mean flow rate, mean subglottic pressure) in all patients. The glottal gap was significantly reduced after thyroplasty type I. Postoperative voice quality was characterized by an improved pitch and amplitude pertubation (jitter and shimmer), phonation time (mean phonation time), and subglottic pressure (mean subglottic pressure). Thyroplasty type I is an effective method for regaining glottal closure and vocal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号