首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
可调谐半导体激光吸收光谱技术(TDLAS)作为一种痕量气体精确检测的方法,已广泛应用于生活生产之中,该方法可通过积分吸光度与气体浓度的线性关系准确反演待测气体的浓度。环境变化和系统噪声等易造成吸光度曲线发生变形,故需对吸光度曲线进行非线性拟合,将其回归至Voigt模型。设计并搭建了基于TDLAS的CO实时在线监测系统,在此平台基础上,提出了一种三角替代Voigt线型单光谱积分吸光度的快速计算方法,并与高斯-埃尔米特方法进行比较。结果表明:三角替代方法浓度反演精度仅下降0.11%,平均计算耗时缩短84.19%;三角替代Voigt线型拟合方法以极小的精度损失,大幅提高了线型拟合的运算速度。  相似文献   

2.
基于不同模型的土壤有机质含量高光谱反演比较分析   总被引:8,自引:0,他引:8  
以新疆奇台县为研究区域,选取该县40个土壤样本,采用多元线性逐步回归法和人工神经网络法两种方法分别建立了土壤有机质含量的反演模型,并对模型进行了检验。结果发现:不同模型的精度值各异,其拟合效果从高到低依次为人工神经网络(ANNs)集成模型>单个人工神经网络(ANNs)模型>多元逐步回归(MLSR)模型。人工神经网络的线性和非线性逼近能力较强,而其集成模型作为提高反演模型精度的重要手段,相关系数高达0.938,均方根误差和总均方根误差最小,分别仅为2.13和1.404,对土壤有机质含量的预测能力与实测光谱非常接近,分析结果达到了较实用的预测精度,为最优拟合模型。  相似文献   

3.
利用紫外光谱法分析水体COD时,当样品达到一定浓度之后(仍处于朗伯-比尔定律通常被适用的浓度范围内),其溶液紫外吸光度与溶液COD数值会明显偏离线性关系,此现象在许多学者发表的紫外光谱论文中都曾有所提及。对此,选用海洋光学公司的S2000微型光纤光谱仪作为光谱测量仪器,选用PX-2脉冲氙灯作为激发光源,在温度为20℃(±0.5℃)及湿度为35%(±5%)的暗室中进行光谱实验,测量了COD值为40~680 mg·L~(-1)的34组邻苯二甲酸氢钾溶液样品的紫外吸收光谱,并基于样品紫外吸收特性进行了分析建模。采用相关系数法选取优势波段,通过对比样品紫外吸收光谱的第二特征峰和水质COD分析中常用波长处的COD-吸光度关系曲线动态特性,选定优势波长为275 nm。采用逐点延伸的方式,在较低浓度段利用鲁棒线性回归、较高浓度段利用非线性最小二乘回归,反复拟合线性或指数方程,滑动预测下一个数据点,根据均方根误差和相对误差判断预设低浓度临界点和较高浓度临界点,确定了低浓度段和较高浓度段COD-吸光度关系模型的分段点分别为300和560 mg·L~(-1),得到低浓度段模型和较高浓度段模型。通过在优势波长处进行低浓度段、较高浓度段和全浓度范围的鲁棒线性回归和非线性最小二乘法回归等不同模型的拟合精度比较,表明40~300和300~560 mg·L~(-1)范围内COD-吸光度关系的线性-指数分段数学模型,不仅拟合精度最高,而且预测效果好,低浓度段的预测均方根误差为4.944 9,较高浓度段的预测均方根误差为6.768 9,整体预测均方根误差为5.664 7。研究结果对紫外光谱应用于较高COD的水质测量和分析具有一定的参考价值。  相似文献   

4.
Qu WW  Shang LP  Li XX  Liu J 《光谱学与光谱分析》2010,30(10):2780-2783
多组分多环芳烃(PAHs)荧光光谱的神经网络定量分析在网络训练过程中需要大量训练样本以提高辨识精度,使得基础实验工作量大且耗时耗力。针对这个问题,文章试验性地采用数据拟合代替部分基础实验,将实验得到的14个训练样本增加到27个;并采用主成分分析法简化神经网络结构,将网络的输入节点数从60维降低到3维。在对二组分混合PAHs溶液的辨识结果表明,通过将14个实验样本拟合成27个训练样本来预测3个待测样本的浓度,能够在保持辨识精度的同时减少基础实验工作并简化神经网络结构,回收率达到89.6%~109.0%,达到了预期目的。  相似文献   

5.
可调谐半导体激光吸收光谱中的吸光度反演算法研究   总被引:1,自引:0,他引:1  
可调谐半导体激光吸收光谱具有高分辨、高灵敏度和快速测量等特点,已经在环境检测、工业过程检测等方面得到广泛应用。在直接吸收光谱技术中,吸光度曲线以及积分吸光度的确定对于气体浓度反演、线强校正等都有重要的作用。对激光直接吸收光谱中吸光度和吸光度积分反演算法进行了研究,采用分段多项式基线拟合方法来消除激光器光强波动的影响,得到吸光度,再用非线性拟合Levenberg-Marquardt算法进行线形拟合来获取积分吸光度。通过水气吸收谱线的检测对算法进行了验证。  相似文献   

6.
非相干宽带腔增强吸收光谱技术(IBBCEAS)利用高精密谐振腔增强吸收光程,实现对痕量气体的高灵敏探测。目前,IBBCEAS技术主要采用发光二极管(LED)作为非相干光源。当谐振腔镜片反射率曲线与带宽有限的LED辐射谱不能很好匹配时,光谱反演波段选择不当可能会对被测气体浓度拟合结果产生较大偏差。以定量探测大气NO2浓度为例,分析了IBBCEAS光谱反演波段对NO2拟合结果的影响,发现当反演波段宽度窄到一定程度后,NO2浓度拟合相对误差会迅速增加。为此,提出了一种基于RBF神经网络结合遗传算法的机器学习IBBCEAS光谱反演波段优化方法,以使浓度拟合误差达到最小。在430~480 nm待选波段内,选择各种宽度和中心波长的子波段作为反演波段,分别进行NO2浓度拟合,以此获得435个样本数据,并将样本数据按照4∶1比例分成学习样本和测试样本,分别用于RBF神经网络学习训练和测试,得到输入参数“反演波段的起始波长与截止波长”与输出参数“浓度拟合相对误差”之间的非线性映射关系。使用遗传算法搜索最优反演波段,将反演波段的起始波长和截止波长组合进行个体编码,随机产生若干个体形成种群。以RBF神经网络的输出(即浓度拟合相对误差)作为个体适应度,经过多代种群进化过程后,获得适应度最优个体,即获得最优反演波段。在种群规模为100个体,种群进化最大代数为100的情况下,当种群进化第61代时,最优个体出现,对应的最优适应度为3.584%,最优反演波段为445.78~479.44 nm。选择相同带宽的其他4个典型反演波段,与最优反演波段下的NO2拟合结果进行了对比。结果显示,在最优反演波段下,无论是拟合误差、相对拟合误差还是拟合残差标准偏差,均低于其他4个反演波段,光谱拟合质量达到最优。结果表明,利用机器学习来确定IBBCEAS最优反演波段是可行的。  相似文献   

7.
FTIR光谱拟合方法在反演气体浓度中的应用   总被引:13,自引:5,他引:8  
研究用FTIR光谱测量系统反演气体浓度的方法,在WINDOWS操作系统下应用非线性最小二乘拟合算法实现了CO气体的定量分析。在FTIR光谱拟合中,使用HITRAN数据库中的光谱作为校准训练集,使测量的CO红外透过率谱与计算的参考光谱达到最佳拟合得到了该气体的浓度,反演结果的绝对准确度达到1%~5%。  相似文献   

8.
报导了采用基于室温脉冲量子级联激光器的脉内光谱检测技术,利用中心波长为1904 cm-1的量子级联激光器,在实验室对NO气体样品进行检测的研究结果. 针对单线直接吸收光谱反演算法进行了研究,介绍了基线拟合的最小二乘算法以获取其吸光度,根据HITRAN数据库中相应吸收谱线的吸收线强,采用扫描积分实现了气体浓度的反演,避免了标气标定造成的误差及污染;通过拟合残差分析得到了系统的检测限,达到34×10-6 m.  相似文献   

9.
在主动式红外遥感测量中,大气中痕量气体的红外吸收与不同红外波段的透过率光谱有关。在很多情况下,透过率光谱在光谱定量分析中起到重要的作用,因此,对测量和仿真的透过率光谱的波段进行优化选择是定量分析的关键。文章对最佳透过率测量范围进行了理论分析, 得到了对应于待测气体浓度反演相对误差最小的理论最佳透过率值;基于谱线的洛伦兹线型通过计算得到了待测气体分子的吸收截面, 同时给出了透过率光谱的校准训练集;确定了单组分CO2光谱测量分析的波段,优化了多组分CO, CO2和N2O光谱同时测量分析的波段并成功地应用于开放光路光谱仪系统。光谱拟合分析结果表明,测量光谱与参考光谱得到了很好的拟合,拟合均方根误差小于1%。  相似文献   

10.
人工神经网络由于具有较强的非线性拟合能力,可用来建立终端位置与接收信号之间的映射关系,从而获得不同位置的信道特性.神经网络建模的精度一般由所使用的训练样本数量决定,训练样本数目越多,模型往往越精确.但大量的训练数据的获取,耗时较多.本文将经验知识融入遗传算法,对人工神经网络模型进行优化,实现了时间反演电磁信道的快速建模.通过提取时间反演信号的传播参数,并将其作为经验知识用于遗传算法的适应度函数,来优化神经网络模型的权值和阈值.在保证训练样本数量不变的情况下,相比直接利用神经网络建模,提高了建模的精度.以一种简单的室内时间反演场景为例,验证了方法的有效性.  相似文献   

11.
结合X射线荧光光谱法,针对土壤中重金属元素Zn含量的预测问题,提出基于深度卷积神经网络回归预测模型。对原始土壤进行相关预处理,用粉末压片法制作土壤压片,采用X射线荧光光谱法(X-Ray-fluorescence,XRF)获取土壤光谱,相比于传统检测方式,XRF法具有检测速度快、精度高、操作简单、不破坏样品属性并且可实现多种重金属元素同时检测等优点,故将XRF与深度卷积神经网络相结合,实现对土壤中重金属Zn元素含量的精确预测。采用箱型图来剔除X射线荧光光谱中的异常数据,采用熵权法结合多元散射校正来对样品盒数据进行校正,采用Savitzky-Golay平滑去噪法以及线性本底法对光谱数据进行预处理,可以有效地解决由外界环境和人为因素产生的噪声及基线漂移等问题。针对卷积神经网络结构的特殊性,将获取的一维光谱数据向量,采用构建光谱数据矩阵的方式来进行处理,将同一浓度、同一含水率下5组平行光谱数据向量转化为二维光谱信息矩阵,以该矩阵作为深度卷积神经网络预测模型的输入,以适应卷积层的操作要求,利用深度卷积神经网络特殊的结构模式,能有效提取土壤光谱数据特征,提高了深度卷积神经网络预测模型的学习能力,降低模型的训练难度。深度卷积神经网络预测模型采用3层卷积层搭建,使用ReLU激活函数激活,采用最大池化方式,减少数据的维度,增加Dropout层,防止过拟合,使用ADAM优化器对预测模型进行优化。实验以平均相对误差(mean relative error, MRE)、损失函数(LOSS)、平均绝对误差(mean absolute error, MAE)确定了模型的最优学习率为10-3以及最优迭代次数为3000,并将深度卷积神经网络预测模型与BP预测模型、ELM预测模型、PLS预测模型进行对比,以均方误差(mean square error, MSE)、均方根误差(root mean square error, RMSE)、以及拟合系数R2来分析比较预测模型的好坏,结果表明,基于深度卷积神经网络预测模型在对土壤中重金属Zn元素含量预测方面优于BP,ELM,PLS三种预测模型,提高了预测精度。  相似文献   

12.
This paper proposes a data-driven method-based fault diagnosis method using the deep convolutional neural network (DCNN). The DCNN is used to deal with sensor and actuator faults of robot joints, such as gain error, offset error, and malfunction for both sensors and actuators, and different fault types are diagnosed using the trained neural network. In order to achieve the above goal, the fused data of sensors and actuators are used, where both types of fault are described in one formulation. Then, the deep convolutional neural network is applied to learn characteristic features from the merged data to try to find discriminative information for each kind of fault. After that, the fully connected layer does prediction work based on learned features. In order to verify the effectiveness of the proposed deep convolutional neural network model, different fault diagnosis methods including support vector machine (SVM), artificial neural network (ANN), conventional neural network (CNN) using the LeNet-5 method, and long-term memory network (LTMN) are investigated and compared with DCNN method. The results show that the DCNN fault diagnosis method can realize high fault recognition accuracy while needing less model training time.  相似文献   

13.
针对单幅RGB图像重建光谱图像中的病态问题,提出一种基于非线性光谱字典学习的非线性重建方法。为了适应线性和非线性数据,该方法首先改进了基于自联想神经网络模型的非线性主成分分析算法,并利用其从训练光谱集中学习低维光谱字典,用于光谱重建的求逆方程中,以缓解病态状况。再在此光谱字典基础上,利用阻尼高斯牛顿法结合截断奇异值分解的正则化方法,进一步缓解该非线性反演的病态问题,实现单幅RGB图像重建光谱图像。在实验中,采用Munsell以及Munsell+Pantone两个光谱训练集学习光谱字典,同时利用CAVE和UEA光谱图像库进行光谱重建测试。该方法测试结果与现有方法比较发现,该方法在不同光谱训练集下重建CAVE和UEA两库光谱图像的均方根差的平均值最低,分别为0.212 4,0.255 4,0.229 4和0.294 9,均方根差的标准偏差接近最好方法的效果,分别为0.068 5,0.084 7,0.066 8和0.087 0。此结果表明该方法针对单幅RGB图像重建光谱图像在重建精度和稳定性上均存在优势。  相似文献   

14.
人工神经网络用于光度法同时测定三组分染料混合物   总被引:3,自引:0,他引:3  
应用人工神经网络原理,以快速BP算法,对紫外可见吸收光谱严重重叠的三组分的染料溶液同时进行含量测定。在200~590nm的范围内,以7个特征波长处的吸收值作为网络特征参数,通过网络训练,复品红、结晶紫、藏红T的相对标准偏差分别为0.34%,0.67%,1.03%,三者的回收率在95.5%~104%之间。实验表明,该算法速度快,预测结果准确,可望用人工神经网络和光度法结合定量测定混合染料。  相似文献   

15.
光谱消光法广泛应用于颗粒粒径测量领域,在利用光谱消光法对颗粒粒径进行反演的过程中,由于颗粒的消光系数存在理论复杂、计算繁琐、收敛速度慢以及求解不稳定等问题,很大程度上影响了整个反演过程的快速性和准确性。且在众多波长的消光数据中,存在较多重复冗余的信息,也很大程度上增加了反演算法的时间。针对光谱消光法粒径反演算法计算繁琐、反演效率低的问题,提出了基于主成分分析(PCA)和BP神经网络的光谱消光颗粒粒径分析方法。基于Mie散射理论对不同粒径、不同波长下的光谱消光值进行了仿真计算,通过对光谱消光数据集的主成分分析及各个波长综合载荷系数的计算,实现了最优特征波长的选取,利用降维后的光谱消光数据训练了PCA-BP神经网络模型,并利用该网络模型计算了粒径颗粒分布。通过仿真计算,比较了PCA-BP神经网络模型与传统的BP神经网络模型的预测精度,并分析了波长数目对两种神经网络模型预测结果的影响。针对训练得到的PCA-BP神经网络模型开展光谱消光法粒径参数反演算法的验证实验,搭建了光谱消光法颗粒粒径参数测量实验系统,测量了粒径范围在0.5~9.7 μm内的6种不同粒径参数的聚苯乙烯标准颗粒。仿真和实验结果表明:基于主成分分析方法可确定各个波长向量之间的相关性,利用综合载荷系数选取最优特征波长对应的消光值对整体的光谱数据具有较好的代表性,可实现光谱数据的降维。相比传统的BP神经网络模型,基于PCA-BP神经网络模型的颗粒粒径分布的分析方法预测精度更高,对于较分散颗粒系的分布参数的预测有更加明显的优势。而且,被选取的波长数较少时,PCA-BP神经网络模型依然有较高的预测精度。利用训练好的PCA-BP神经网络模型对颗粒粒径参数进行实验验证,预测结果可瞬时输出,颗粒粒径分布误差在5%以内,验证了该算法的可行性。  相似文献   

16.
矮新星是一类特殊而稀少的半相接双星。发现更多的矮新星对于深入研究物质转移理论、理解密近双星演化过程意义深远。利用深度学习技术提取天体光谱特征并进而分类是天文数据处理领域的研究热点。传统的自编码器是仅包含一个隐层的经典神经网络模型,编码能力有限,数据表征学习能力不足。模块化拓宽神经网络的深度能够驱使网络继承地学习到天体光谱的特征,通过对底层特征的逐渐抽象学习获得高层特征,进而提高光谱的分类准确率。以自编码器为基础构建了由输入层、若干隐藏层和输出层组成的基于多层感知器架构的深度前馈堆栈式自编码器网络,用于处理海量的光谱数据集,挖掘隐藏在光谱内部具有区分度的深度结构特征,实现对矮新星光谱的准确分类。鉴于深度架构网络的参数设置会严重影响所构建网络的性能,将网络参数的优化分为逐层训练和反向传播两个过程。预处理后的光谱数据先由输入层进入网络,再经自编码器算法和权值共享实现对网络参数的逐层训练。反向传播阶段将初始样本数据再次输入网络,以逐层训练所得的权值对网络初始化,再把网络各层的局部优化训练结果融合起来,根据所设置的输出误差代价函数调整网络参数。反复地逐层训练和反向传播,直到获得全局最优的网络参数。最后由末隐层作为重构层搭建支持向量机分类器,实现对矮新星的特征提取与分类。网络参数优化过程中利用均值网络思想使网络隐层单元输出按照dropout系数衰减,并由反向传播算法微调整个网络,从而防止发生深度过拟合现象,减少因隐层神经元间的相互节制而学习到重复的数据表征,提高网络的泛化能力。该网络分布式的多层次架构能够提供有效的数据抽象和表征学习能力,其特征检测层可从无标注数据中隐式地学习到深度结构特征,有效刻画光谱数据的非线性和随机波动性,避免了光谱特征的显式提取,体现出较强的数据拟合和泛化能力。不同层之间的权值共享能够减少冗余信息的干扰,有效化解传统多层次架构网络易陷入权值局部最小化的风险。实验表明,该深度架构网络在矮新星分类任务中能达到95.81%的准确率,超过了经典的LM-BP网络。  相似文献   

17.
人工神经网络法对多组分大气污染物的同时监测   总被引:12,自引:3,他引:9  
用 18 7 8的反向传播人工神经网络 (BP ANN)模型 ,对FTIR光谱图存在着严重混叠干扰的八种有毒易挥发有机化合物 (VOCs)组成的大气污染物进行了同时定量测定 ,得到了各污染物的浓度。所测定的八种VOCs为苯乙酮 ,苯酚 ,三氯甲苯 ,1,3丁二烯 ,氯苯 ,甲醇 ,三氯代乙烷和二氯甲烷。用标准预测误差 (%SEP) ,平均预测误差 (MPE)和平均相对误差 (MRE)来评价其预测能力。结果表明 ,本方法对多组分大气污染物定量分析 ,能够得到较为满意的结果。  相似文献   

18.
由于近红外光谱在药品鉴别应用中具有分析速度快、样品无损、可现场检测等突出优点,目前已在众多领域中广泛应用。但近红外光谱存在信噪比低,吸收强度弱且谱峰重叠等缺点,无法从光谱中直接得到定性/定量的物质信息,因而近红外光谱分析技术常作为一种间接分析技术,并且光谱的化学计量学建模方法成为近红外光谱分析的核心内容。深度学习是机器学习的一个新的分支,并已经成功运用于多个领域。深度学习的网络结构和非线性的激活能力,使其模型特别适合高维、非线性的大规模数据建模。为进一步丰富近红外光谱建模方法,并提高近红外光谱分析技术的回归精度或分类准确率,将深度学习方法应用于近红外光谱分析,发展新的建模方法十分必要。面向近红外光谱定性分析技术,提出一种基于堆栈压缩自编码网络(SCAE)光谱定性分析方法,并应用于多类别药品的光谱分析,以区分或鉴别不同厂家生产的同种药品。压缩自编码网络(CAE)以自编码网络(AE)为基础,进一步加入雅克比矩阵作为约束项。自编码网络最初是用实现数据降维,以学习数据内部特征,而雅克比矩阵包含数据在各个方向上的信息,将其作为AE的约束项则可使提取到的特征对输入数据在一定程度下的扰动具有不变性,从而提高AE提取特征的能力。SCAE是一种由多层CAE构成的神经网络。前一层CAE的隐藏层作为后一层CAE的输入层,网络的全部参数是通过采用逐层贪婪的训练方式来获取的,训练结束后将所有网络视为一个整体,通过反向传播算法进行微调,最后使用Logistic/Softmax分类器进行定性分析。实验数据均为中国食品药品检定研究院采集,以头孢克肟胶囊作为二分类实验数据,硝酸异山梨酯片作为多分类实验数据。通过Bruker Matrix光谱仪测定每个样本在不同波长下的吸光度值得到其光谱曲线,再通过OPUS软件消除漂移等因素对光谱样本之间产生的偏差。接下来通过实验确定约束项雅克比矩阵的系数λ为0.003之后建立模型。建模过程分为五个阶段,分别为: 预处理阶段,预训练阶段,微调阶段,测试阶段和对比阶段。为了验证SCAE在分类准确性、算法稳定性和建模时间等方面的性能,与BP神经网络、SVM算法、稀疏自编码(SAE)和降噪自编码(DAE)开展对比实验研究。分类准确性方面,在不同的训练集与测试集的比例下,SCAE均有最佳的分类准确性与算法稳定性。建模时间方面,由于SVM算法不需要预训练和特征提取,所以运行时间方面比其他算法有大的优势,但是SCAE建模速度优于除SVM之外的其他对比算法。综合而言,使用SCAE进行药品鉴别有效可行。  相似文献   

19.
针对传统方法在提取城市不透水层中的许多局限性,采用两种非线性光谱混合分解模型,包括混合调谐匹配滤波和多层感知器神经网络,通过混合像元分解获取城市不透水层.混合调谐匹配滤波利用用户选择的端元,通过最大化端元响应并减少未知背景信息的影响,进行局部分解端元.多层感知器由多个感知器组成,能够很好的进行非线性学习.对Landsa...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号