首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.  相似文献   

2.
A new sample cell assembly design for the Paris‐Edinburgh type large‐volume press for simultaneous measurements of X‐ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid–solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi‐I to Bi‐II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high‐temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure‐induced structural changes to be directly correlated to electrical and thermal properties.  相似文献   

3.
In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters,bulk modulus, band gap and thermoelectric properties(Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg_2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor(PF) increases with temperature. The thermoelectric properties of Mg_2C have been calculated in a temperature range of 100 K–1200 K.  相似文献   

4.
We have systematically studied the thermoelectric properties in Zn-doped Sn Te.Strikingly,band convergence and embedded precipitates arising from Zn doping,can trigger a prominent improvement of thermoelectric performance.In particular,the value of dimensionless figure of merit z T has increased by 100% and up to ~ 0.5 at 775 K for the optimal sample with 2% Zn content.Present findings demonstrate that carrier concentration and effective mass play crucial roles on the Seebeck coefficient and power factor.The obvious deviation from the Pisarenko line(Seebeck coefficient versus carrier concentration) due to Zn-doping reveals the convergence of valence bands.When the doping concentration exceeds the solubility,precipitates occur and lead to a reduction of lattice thermal conductivity.In addition,bipolar conduction is suppressed,indicating an enlargement of band gap.The Zn-doped Sn Te is shown to be a promising candidate for thermoelectric applications.  相似文献   

5.
Ya-Nan Li 《中国物理 B》2022,31(4):47203-047203
Increasing the phonon scattering center by adding nanoparticles to thermoelectric materials is an effective method of regulating the thermal conductivity. In this study, a series of Ca$_{3}$Co$_{4}$O$_{9}/x$ wt.% CNTs ($x=0$, 3, 5, 7, 10) polycrystalline ceramic thermoelectric materials by adding carbon nanotubes (CNTs) were prepared with sol-gel method and cold-pressing sintering technology. The results of x-ray diffraction and field emission scanning electron microscopy show that the materials have a single-phase structure with high orientation and sheet like microstructure. The effect of adding carbon nanotubes to the thermoelectric properties of Ca$_{3}$Co$_{4}$O$_{9}$ was systematically measured. The test results of thermoelectric properties show that the addition of carbon nanotubes reduces the electrical conductivity and Seebeck coefficient of the material. Nevertheless, the thermal conductivity of the samples with carbon nanotubes addition is lower than that of the samples without carbon nanotubes. At 625 K, the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$/10 wt.% CNTs sample is reduced to 0.408 W$\cdot$m$^{-1}\cdot$K$^{-1}$, which is about 73% lower than that of the original sample. When the three parameters are coupled, the figure of merit of Ca$_{3}$Co$_{4}$O$_{9}$/3 wt.% CNTs sample reaches 0.052, which is 29% higher than that of the original sample. This shows that an appropriate amount of carbon nanotubes addition can reduce the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$ ceramic samples and improve their thermoelectric properties.  相似文献   

6.
Influence of the grain sizes on thermoelectric parameters of pressurized solid solutions of the composition Mg2Si0.8Sn0.2 was studied. The Seebeck coefficient, electric conductivity, thermal conductivity, and Hall coefficient were determined. Decreasing the grain size to the nanoscale was found to decrease the mobility at low temperatures and resulted in a peculiar temperature dependence of the electric conductivity, but did not lead to a decrease in the thermo EMF. It was found that the grain size had no effect on the thermoelectric efficiency of the investigated solid solution in the operating temperature range.  相似文献   

7.
《Current Applied Physics》2019,19(6):721-727
We investigated the dynamical stability, electronic and thermoelectric properties of the ZnFeTiSi Heusler compound by combining the first-principles calculations and semi-classical Boltzmann transport theory. The phonon dispersion indicates the dynamical stability and the calculated formation energy is negative which confirm the stability of ZnFeTiSi in the Heusler structure. The calculated electronic structures show that ZnFeTiSi is a semiconductor with an indirect band gap of about 0.573 eV using GGA and 0.643 eV by mBJ-GGA potentials at equilibrium lattice parameter (5.90 Å). Seebeck coefficient, electrical conductivity and electronic thermal conductivity were calculated to describe the thermoelectric properties of the ZnFeTiSi compound. It is found that it exhibits high Seebeck coefficient and power factor, making it promising for future thermoelectric applications.  相似文献   

8.
热电材料可以实现热能和电能的相互转换,它是一种环境友好的功能性材料.当前,热电材料的热电转换效率低,这严重制约了热电器件的大规模应用,因此寻找更加优异热电性能的新材料或提高传统热电材料的热电性能成为热电研究的主题.与块状材料相比,薄膜具有二维的宏观性质和一维的纳米结构特性,方便研究材料的物理机制与性能的关系,还适用于制备可穿戴电子设备.本文总结了Cu2Se薄膜5种不同的制备方法,包括电化学沉积、热蒸发、旋涂、溅射以及脉冲激光沉积.另外,结合典型事例,总结了薄膜的表征手段,并从Cu2Se的电导率、塞贝克系数和热导率等参数出发,讨论了各个参数对热电性能的影响机制.最后介绍了Cu2Se薄膜热电的热门应用方向.  相似文献   

9.
霍凤萍  吴荣归  徐桂英  牛四通 《物理学报》2012,61(8):87202-087202
以Pb粉、Te粉、Ag粉、Ge粉为原材料,在真空气氛下合成(AgSbTe2)100-x-(GeTe)x (x=80---90) (TAGS)合金热电材料, X射线衍射(XRD)分析表明,热压烧结后合金具有低温菱形结构. 通过热压烧结法将TAGS粉末制备成块体材料,运用XRD和扫描电子显微镜对材料的物相成分、 晶体结构和形貌进行了表征.采用直流四探针法测定样品的电导率,当样品两端的温差为1---4℃ 的情况下测量Seebeck系数.通过材料热电性能测试,研究了30---500℃温度范围内不同组分 样品性能参数的变化.结果表明,所制备的TAGS热电材料具有纳米结构, 其性能随着组分的变化而变化, TAGS-80具有较好的热电性能,在530℃时具有最高热电优值(ZT=1.80).  相似文献   

10.
Liu W  Tan X  Yin K  Liu H  Tang X  Shi J  Zhang Q  Uher C 《Physical review letters》2012,108(16):166601
Mg(2)Si and Mg(2)Sn are indirect band gap semiconductors with two low-lying conduction bands (the lower mass and higher mass bands) that have their respective band edges reversed in the two compounds. Consequently, for some composition x, Mg(2)Si(1-x)Sn(x) solid solutions must display a convergence in energy of the two conduction bands. Since Mg(2)Si(1-x)Sn(x) solid solutions are among the most prospective of the novel thermoelectric materials, we aim on exploring the influence of such a band convergence (valley degeneracy) on the Seebeck coefficient and thermoelectric properties in a series of Mg(2)Si(1-x)Sn(x) solid solutions uniformly doped with Sb. Transport measurements carried out from 4 to 800 K reveal a progressively increasing Seebeck coefficient that peaks at x=0.7. At this concentration the thermoelectric figure of merit ZT reaches exceptionally large values of 1.3 near 700 K. Our first principles calculations confirm that at the Sn content x≈0.7 the two conduction bands coincide in energy. We explain the high Seebeck coefficient and ZT values as originating from an enhanced density-of-states effective mass brought about by the increased valley degeneracy as the two conduction bands cross over. We corroborate the increase in the density-of-states effective mass by measurements of the low temperature specific heat. The research suggests that striving to achieve band degeneracy by means of compositional variations is an effective strategy for enhancing the thermoelectric properties of these materials.  相似文献   

11.
In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg_2Si under uniaxial strain have been explored first time in this report.  相似文献   

12.
This work concerns a predictive study of PdZrGe half-Heusler compound with 18 valence electrons. The structural and electronic properties are investigated by using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of generalized gradient approximation (GGA). To investigate the thermodynamic properties, we are applying the quasi-harmonic Debye model. The semi-classical Boltzmann theory as implemented in the BoltzTraP code is used to study the thermoelectric properties. We have found that the PdZrGe alloy is an indirect band gap semiconductor. Also the PdZrGe exhibit a negative thermal expansion. The Seebeck coefficient (S) is relatively high (237 µV/K at 300?K) due to its semiconducting nature. The calculated thermoelectric figure of merit is 0.759 at 300?K; this result indicates that our compound is an excellent candidate for practical applications in the thermoelectric field.  相似文献   

13.
The electrical transport properties of p-doped semiconductors CdTe15/16M1/16 (M=N, P, As, Sb) and Cd15/16TeM1/16 (M=Na, K, Rb, Cs) with two configurations are investigated through first-principles calculations combined with Boltzmann transport theory under the relaxation time approximation. It is found that N and Cs atoms in the homogeneous structure induce much sharper electron densities of states (DOSs) and flatter energy bands at the valence band edges than the rest of doped elements, resulting in much larger Seebeck coefficients. The calculations reveal that most of the Seebeck coefficients and electrical conductivities are impacted unfavorably by the conglomeration of impurity atoms considered. Though the power factors for homogeneous doping of N and Cs are comparatively smaller, the electronic figures of merit are much larger at 800–1000 K than the rest ones due to much smaller electronic thermal conductivities, therefore probably enhancing the thermoelectric figures of merit. The results show that doping the elements with electronegativities distinct from the host atoms can enhance the Seebeck coefficients and the thermoelectric performances of bulk semiconductors efficiently if the energy levels of doped atoms resonate with those of host atoms and the arrangement of doped atoms is modulated appropriately to avoid deteriorating the sharpness of the DOS (or transport distribution).  相似文献   

14.
We study the effect of pressure on electronic and thermoelectric properties of Mg_2Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus with pressure is also analyzed. Further, the thermoelectric properties(Seebeck coefficient, electrical conductivity, electronic thermal conductivity) have been studied as a function of temperature and pressure up to 1200 K. The results show that Mg_2Si is an n-type semiconductor with a band gap of 0.21 eV. The negative value of the Seebeck coefficient at all pressures indicates that the conduction is due to electrons. With the increase in pressure, the Seebeck coefficient decreases and electrical conductivity increases. It is also seen that, there is practically no effect of pressure on the electronic contribution of thermal conductivity.The paper describes the calculation of the lattice thermal conductivity and figure of merit of Mg_2Si at zero pressure. The maximum value of figure of merit is attained 1.83 × 10~(-3) at 1000 K. The obtained results are in good agreement with the available experimental and theoretical results.  相似文献   

15.
In this study, we demonstrate the optimization of the annealing temperature for enhanced thermoelectric properties of ZnO. Thin films of ZnO are grown on a sapphire substrate using the metal organic chemical Vapor Deposition (MOCVD) technique. The grown films are annealed in an oxygen environment at 600–1000°C, with a step of 100°C for one hour. Seebeck measurements at room temperature revealed that the Seebeck coefficient of the sample that was not annealed was 152 μV/K, having a carrier concentration of N D ~ 1.46 × 1018 cm–3. The Seebeck coefficient of the annealed films increased from 212 to 415 μV/K up to 900°C and then decreased at 1000°C. The power factor is calculated and found to have an increasing trend with the annealing temperature. This observation is explained by the theory of Johnson and Lark–Horovitz that thermoelectric properties are enhanced by improving the structure of ZnO thin films. The Hall measurements and PL data strongly justify the proposed argument.  相似文献   

16.
Theory predicts a substantial increase in the dimensionless figure of merit as the dimensionality and characteristic size of a material are decreased. We explore the use of bismuth nanoparticles pressed into pellets as potential increased efficiency thermoelectric materials. The figure of merit of these pellets is determined by independently measuring the electrical conductivity, thermal conductivity and Seebeck coefficient. The results from the nanoparticle sample are compared to microparticle-based samples. Both sample types show a slight reduction in thermal conductivity relative to bulk bismuth and a Seebeck coefficient near or slightly larger in magnitude than bulk bismuth. These changes are dwarfed by a hundred-fold decrease in the electrical conductivity due to porosity and an oxide layer on the particles. The low conductivity leads to figures of merit at least two orders of magnitude smaller than bulk bismuth. Oxide layer removal and reduced pellet porosity will be required to increase the figure of merit.  相似文献   

17.
吴子华  谢华清*  曾庆峰 《物理学报》2013,62(9):97301-097301
ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率. 关键词: 热电材料 ZnO 纳米复合 热导率  相似文献   

18.
Summary A mathematical model of the far-field diffraction pattern of a laser beam with laser heating self-phase modulation through an optically thin film is presented. We deal with the steady-state temperature field generated by the weak absorption of a laser beam in an optically and thermally thin film bounded by two transparent plates, the cell walls, whose thermal exchange to the surrounding ambient has been assumed to be linear in the temperature difference to the ambient. These hypotheses describe the application of the steady-state ?thermal lens? spectroscopy to the detection of the optical or thermal properties of liquid samples. We give a very simple expression for the diffracted intensity that appears suitable for fast computer calculations. The good accuracy of the technique is shown by comparison with the results given by more intricate approaches. To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

19.
We report on the synthesis and low temperature transport of Mg2Ge1–y Sby with 0 ≤ y ≤ 0.33. In these materials Sb substitutes for Ge in the antifluorite structure. Electrical and thermal transport measurements indicate that as the Sb content increases, vacancies are formed on the Mg sites thereby contributing to variations in the transport properties. With increasing Sb content both the absolute Seebeck coefficient and electrical resistivity first decrease and then increase, while the thermal conductivity decreases monotonically. Hall measurements indicate this tendency is associated with vacancy formation at higher Sb concentrations. The lattice thermal conductivity is fitted using the Debye approximation in order to elucidate the effect of alloying. We discuss these results in terms of potential for thermoelectric applications. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper we study the thermoelectric properties of n-and p-type PbTe theoretically in a wide temperature interval of 300 to 900 K. A three-band model of the PbTe electron-energy spectrum was used in these calculations for the first time. The full set of the relevant kinetic characteristics is calculated, including the electrical and thermal conductivities, as well as the Seebeck coefficient and the thermoelectric figure-of-merit. The calculated thermoelectric quantities are in good agreement with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号