首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Soft magnetic composites with a thin MgO insulating layer were produced by a sol-gel method. Energy dispersive X-ray spectroscopy, X-ray analysis, Fourier transform infrared spectroscopy, density measurement and compositional maps confirmed that thin layers of MgO covered the iron powders. Coercivity measurement showed that the stress relaxation and reduction of hysteresis loss efficiently occurred at 600 °C. At this temperature, the phosphate insulation of commercial SOMALOYTM samples degrade and their electrical resistivity, magnetic permeability and operating frequency decreases noticeably. The results show that the MgO insulation has a greater heat resistance than conventional phosphate insulation, which enables stress-relief at higher temperatures (600 °C) without a large increase in eddy current loss. The results of annealing at 600 °C show that the electrical resistivity and ferromagnetic resonance frequency increased from 11 μΩ m and 1 kHz for SOMALOYTM samples to 145 μΩ m and 100 kHz for the MgO insulated composites produced in this work.  相似文献   

2.
This paper reports the measurement of magnetic properties of the soft magnetic composite material SOMALOYTM 500 in a square sample under different patterns of flux density with 2D magnetic excitations. The test system, principle of measurement, magnetic power loss calculation, and methods of correction for misalignment of H surface sensing coils are presented. The experimental results show that although nominally isotropic, the SOMALOYTM 500 sample exhibits some anisotropy. The results are useful in the design and performance analysis of rotating electrical machines.  相似文献   

3.
This paper reports the measurement and modelling of magnetic properties of SOMALOYTM 500, a soft magnetic composite (SMC) material, under different 2D vector magnetisations, such as alternating along one direction, circularly and elliptically rotating in a 2D plane. By using a 2D magnetic property tester, the BH curves and core losses of the SMC material have been measured with different flux density patterns on a single sheet square sample. The measurements can provide useful information for modelling of the magnetic properties, such as core losses. The core loss models have been successfully applied in the design of rotating electrical machines with SMC core.  相似文献   

4.
Amorphous MgO thin films were prepared by pulsed laser deposition (PLD) under various oxygen pressures. The structural, magnetic, and optical properties of the films were investigated. All as-deposited samples exhibit room temperature ferromagnetism, which depend strongly on oxygen pressure. It is found that the saturation magnetization (M s) initially increases with the oxygen pressure, the maximum M s of 8.57 emu/cm3 is obtained for the MgO film deposited under an oxygen pressure of 2 mTorr. However, the M s significantly reduces at higher oxygen pressures. Further X-ray photoelectron spectroscopy and photoluminescence demonstrate that the long-range magnetic order in amorphous MgO films can be attributed to the nonstoichiometry effect and the presence of Mg vacancies.  相似文献   

5.
Using Mn+ implantation following ion beam-induced epitaxial crystallization (IBIEC) annealing, high Curie temperature ferromagnetic (Ga,Mn)As thin film was fabricated. The crystalline quality of the Mn+ implanted layer was identified by X-ray diffraction (XRD) and transmission electron microscopy (TEM). A clear ferromagnetic transition at Tc 253 K was observed by magnetization vs. temperature measurement. We infer that IBIEC treatment is a useful method not only for the low-temperature annealing of (Ga,Mn)As thin films but also for other dilute magnetic semiconductor (DMS) samples.  相似文献   

6.
Polycrystalline Co2Mn1−xSi (CMS) thin films with Mn-deficiency can grow on different types of substrates such as MgO (1 0 0) single crystal, α-sapphire (0 0 0 1) and Si coated with SiO2 either by using V or Ta/Cu as the seed layer. The magnetic property, especially the coercivity of the CMS thin films strongly depends on the crystalline structure and microstructure of the CMS thin film, hence it is affected by the substrate and also the seed layer. Very soft CMS thin film with coercivity of about 20 Oe has been obtained when MgO (1 0 0) is used as the substrate. Magnetic tunnel junctions (with MR ratio of about 9%–18%) by utilizing the CMS as one of ferromagnetic electrodes have been successfully fabricated. The degradation of the magnetoresistive effect of the MTJ after magnetic annealing is attributed to the diffusion of the Mn-atoms into the tunnel barrier during the annealing process.  相似文献   

7.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

8.
Microstructure, revealed by X-ray diffraction, transmission electron microscopy and Mössbauer spectroscopy, and magnetic properties such as magnetic susceptibility, its disaccommodation, core losses and approach to magnetic saturation in bulk amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)100−xYx (x=0, 2, 3 or 4) alloys in the as-cast state and after the annealing in vacuum at 720 K for 15 min. are studied. The investigated alloys are ferromagnetic at room temperature. The average hyperfine field induction decreases with Y concentration. Due to annealing out of free volumes its value increases after the heat treatment of the samples. The magnetic susceptibility and core losses point out that the best thermal stability by the amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)97Y3 alloy is exhibited. Moreover, from Mössbauer spectroscopy investigations it is shown that the mentioned above alloy is the most homogeneous. The atom packing density increases with Y concentration, which is proved by the magnetic susceptibility disaccommodation and approach to magnetic saturation studies.  相似文献   

9.
To meet challenges for a smaller transistor feature size, ultra-thin HfO2 high-k dielectric has been used to replace SiO2 for the gate dielectric. In order to accurately analyze the ultra-thin HfO2 films by grazing incidence X-ray reflectivity (GIXRR), an appropriate material model with a proper layer structure is required. However, the accurate model is difficult to obtain, since the interfaces between layers of the ultra-thin HfO2 films are not easily identified, especially when post-deposition annealing process is applied. In this paper, 3.0 nm HfO2 films were prepared by atomic layer deposition on p-type silicon wafer, and annealed in Ar environment with temperatures up to 1000 °C. The layer structures and the role of the interfacial layer of the films in the post-deposition annealing processes were evaluated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The experimental results and analysis showed that layer thicknesses, crystal phases and chemical structures of the ultra-thin HfO2 films were significantly dependent on annealing temperatures. The binding energy shifts of Hf 4f, O 1s, and Si 2p elements revealed the formation of Hf silicate (Hf-O-Si bonding) with increasing annealing temperatures. Due to the silicate formation and increasing silicon oxide formation, the interface broadening is highly expected. The structure analysis of the GIXRR spectra using the modified material structure model from the XPS analysis confirmed the interfacial broadening induced by the post-deposition annealing.  相似文献   

10.
李宝河  黄阀  杨涛  冯春  翟中海  朱逢吾 《物理学报》2005,54(8):3867-3871
用磁控溅射法在单晶MgO(100)基片上制备了[FePt 2 nm/Ag dnm]10多层膜, 经真空热处理后,得到具有高矫顽力的垂直取向L10-FePt/Ag颗粒膜.x射线衍射结 果表明,在250 ℃的热基片上溅射,当Ag层厚度d=3—11 nm时,FePt颗粒具有很好的[001]取向,随着Ag层厚度的增加,FePt颗粒尺寸减小.[FePt 2 nm/Ag 9 nm]10经过6 00 ℃真空热处理15 min后,颗粒大小仅约8 nm,垂直矫顽力达到692 kA/m.这种无磁耦合作用的颗粒膜,适合用作超高密度的垂直磁记录介质. 关键词: 磁控溅射 垂直磁记录 纳米颗粒膜 0-FePt/Ag')" href="#">L10-FePt/Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号