首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube(SiNT),the electronic structures,the lattice dynamics,and the thermoelectric properties of bulk silicon(bulk Si)and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory.Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1,while its electrical conductivity is improved significantly,although the Seebeck coefficient is increased slightly as compared to those of the bulk Si.As a consequence,the figure of merit(ZT)of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10.The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap.The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding,a decreased phonon density of states,a reduced phonon vibration frequency,as well as a shortened mean free path of phonons.The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.  相似文献   

2.
Sn-filled CoSb3 skutterudite compounds were synthesized by the induction melting process. Formation of a single δ-phase of the synthesized materials was confirmed by X-ray diffraction analysis. The temperature dependences of the Seebeck coefficient, electrical resistivity and thermal conductivity were examined in the temperature range of 300-700 K. Positive Seebeck and Hall coefficients confirmed p-type conductivity. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled CoSb3 skutterudite is a degenerate semiconductor. The thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. The lowest thermal conductivity was achieved in the composition of Sn0.25Co8Sb24.  相似文献   

3.
In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg_2Si under uniaxial strain have been explored first time in this report.  相似文献   

4.
A generalized expression is used on the basis of relaxation time approximation to facilitate calculation of lattice thermal conductivity of dielectric materials as well as skutterudite family consists of compounds of the form AB3. It is assumed that phonon scattering processes are independent and is represented by frequency dependent relaxation times. The contributions of normal three phonon scattering processes are included explicitly as redistribution of phonon momentum between two oscillation branches is considered. Magnitudes of relaxation times are estimated from the experimental data. The result for CoSb3 is in reasonably good agreement with the experimental result in the temperature range 1–1000°K. It is observed that redistribution of phonon momentum between two oscillation branches leads to a significant suppression of thermal conductivity maximum and it is observed that for unfilled skutterudite the main dominant mechanism at the thermal conductivity maximum is three phonon normal scattering process.  相似文献   

5.
We present results of first principles total energy calculations of the structure, electronic and lattice dynamics for beryllium semiboride and its three ternary alloys using generalized gradient and local density approximations under the framework of density functional theory. The generalized gradient approximation is used for all compounds except MgBeB using the Perdew-Burke-Ernzehorf exchange correlation functional while local density approximations use the Perdew-Zunger ultrasoft exchange correlation functional. The calculated ground state structural parameters are in good agreement with those of experimental and previous theoretical studies. The electronic band structure calculations show that Be2B may transform to a semiconductor after Al substitution. A linear response approach to density functional theory is used to calculate phonon dispersion curves and vibrational density of states. The phonon dispersion curves of Be2B and AlBeB are positive indicating a dynamical stablility of the structure for these compounds. The phonon dispersion curves of NaBeB and MgBeB show the imaginary phonons throughout the Brillouin zone, which confirms dynamical instability as indicated in band structures for these alloys. We also present the partial phonon density of states for different species of Be2B and AlBeB to bring out the details of the participation of different atoms in the total phonon density of state, particularly the role played by Al atom. The first time calculated phonon properties are clearly able to bring out the significant effect of isoelectronic substitution in Be2B.  相似文献   

6.
Abstract

The nodal-line semimetals are new and very promising materials for technological applications. To understand their structural, mechanical, lattice dynamical and thermal properties in detail, we have investigated theoretical study of ZrXY (X = Si,Ge; Y = S,Se) using Density Functional Theory for the first time. Obtained lattice parameters are in excellent agreement with previous experimental data. These nodal-line semimetals obey the mechanical stability conditions for tetragonal structure. We obtain Bulk modulus, Shear modulus, Poisson’s ratio, Pugh ratio, sound velocities and thermal conductivity using elastic constant. All the materials behave in brittle manner. Poisson’s ratio data and Bader charge analysis results indicate that the ionic bonding characters are dominant. Next, the lattice dynamical properties are calculated. Phonon density of states shows that nodal-line semimetals ZrXY are also dynamically stable in the tetragonal structure. Raman and IR active phonon modes are determined. Highest optical mode at gamma point corresponds to A2u (IR active) and Eg (Raman active) modes for ZrXSe and ZrXS, respectively. Based on phonon density of states, thermal properties such as Helmholtz free energy, entropy, heat capacity at constant volume and Debye temperature are also presented and discussed.  相似文献   

7.
范航  何冠松  杨志剑  聂福德  陈鹏万 《物理学报》2019,68(10):106201-106201
高聚物粘结炸药(PBX)的热力学性质是用于炸药结构响应、安全性评估、数值模拟分析等的重要参数.由于PBX结构的多尺度特性,完全采取实验方法精细表征这些参数存在巨大的挑战.本文运用第一性原理和分子动力学计算的方法,系统研究了三氨基三硝基苯(TATB)基高聚物粘结炸药的热力学参数和界面热传导性质.利用散射失配模型研究了TATB与聚偏二氟乙烯(PVDF)界面的热传导过程,发现热导率随温度升高而上升,并且在高温情况下接近于定值.基于分子动力学获得的TATB热导率并结合界面热导率,分析了PBX炸药的热导与颗粒尺寸的关系,当颗粒尺寸大于100 nm时,界面热阻对于PBX热导率的影响有限.  相似文献   

8.
本文计算了Heusler合金Li2AlGa和Li2AlIn的晶格参数、体积模量、体积模量的一阶导数、 电子能带结构、声子色散曲线和声子态密度,并与密度泛函理论中的广义梯度近似计算结果进行比较. 计算的晶格参数与文献有很好的一致性. 两个Heusler合金的电子能带结构表明它们是半金属结构. 并利用声子色散曲线和声子密度图研究Heusler合金晶格动力学. Li2AlGa和Li2AlIn Heusler合金在基态呈现动力学稳定.  相似文献   

9.
The present paper reports a comprehensive and complementary study on structural, electronic and phonon properties of face centered cubic fluorites, namely CaF2, BaF2 and SrF2, using first principles density functional calculations within the generalized gradient approximation. The calculated lattice constants and bulk modulus are in good agreement with available experimental data. The analysis of band structure and density of states confirms the ionic character for all the three fluorides. The phonon dispersion curves and corresponding phonon density of states obtained in the present work are consistent with the available experimental and other theoretical data. The LO-TO splitting is maximum for CaF2, which confirms that the ionicity is maximum in the case of CaF2. The phonon properties for SrF2 have been calculated for the first time.  相似文献   

10.
Mg2Sn电子结构及热力学性质的第一性原理计算   总被引:1,自引:0,他引:1       下载免费PDF全文
刘娜娜  宋仁伯  孙翰英  杜大伟 《物理学报》2008,57(11):7145-7150
采用基于第一性原理的赝势平面波方法系统地计算了Mg2Sn基态的电子结构、弹性常数和热力学性质.计算结果表明Mg2Sn的禁带宽度为0.1198eV.运用线性响应方法确定了声子色散关系和态密度,得出Mg2Sn的热力学性质如等容比热和德拜温度.计算Mg2Sn的热导率并与实验数据相比较. 关键词: 第一性原理 电子结构 弹性常数 热力学性质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号