首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The adsorption and desorption of nitrogen on a platinum filament have been studied by thermal desorption techniques. Nitrogen adsorption becomes significant only after any carbon contamination is removed from the surface by heating the platinum filament in oxygen, and after the CO content in the background gas is reduced substantially. At room temperature nitrogen populates an atomic tightly bound β-state, E = 19 kcal mole?1. The saturation coverage of the (3-state is 4.5 × 1014 atoms cm?2. Formation of the (β-state is a zero order process in the pressure range studied. At 90 K two additional α1- and α2-desorption peaks are observed. The activation energy for desorption for the α2-state is 7.4 kcal mole?1 at low coverage decreasing to 3 kcal mole?1 at saturation of this state, 6 × 10 molecules cm?2. The maximum total coverage in the α-states was 1.2 × 1015 molecules cm?2. A replacement process between the β- and α-states has been observed where each atom in the (β-state excludes two molecules from the α-state.  相似文献   

2.
Flash desorption mass spectrometry and Auger electron spectroscopy are used to compare the binding states, desorption and adsorption kinetics, and adsorbate densities on the (111), (100), (110), (211), and (210) crystal planes of clean Pt. Desorption obeys first order kinetics for all states with activation energies of the most tightly bound states varying from 36 kcal mole?1 on (211) and (210) to 26 kcal mole?1 on (110) and (111). The sticking coefficient is nearly unity on (110) and (210) and is 0.24 on (100). Multiple binding state (or breaks in the desorption activation energy versus coverage) are observed on all planes. The saturation CO density at 300 K is highest on the (100), (210), and (211) planes and lowest on (110). Properties of (210) and (211) cannot be explained simply in terms of sites on the other planes, and adsorption indicates that none of the planes facet. Previous models of CO on (111) and (110) are compared with present results, and structures are suggested for the other planes.  相似文献   

3.
The adsorption and condensation of benzene on ZnO(101̄0) was investigated by thermal desorption spectroscopy and LEED. The first monolayer shows an ordered c(2 × 2) super-structure. First order desorption is observed. The desorption energy and frequency factor decrease from 73 to 56 kJ mole?1 and from ~1015 to ~1012 s?1, respectively, with coverage increasing to 0.85. The second layer is more weakly bound. Two-dimensional (2D) island formation is deduced from peak shape analysis. Near completion, the second layer converts to a more tightly bound configuration as deduced from a sudden shift of the desorption peak and the formation of an additional c(4 × 3) LEED pattern. This pattern which can be identified as a property of bulk benzene is preserved upon epitaxial growth of the 3D benzene crystal. Angular resolved UPS measurements indicate the benzene molecules of the first layer to be arranged in an oblique position of low symmetry.  相似文献   

4.
Submonolayer adsorption isotherms of xenon condensed on the (0001) face of graphite are measured between 85°K and 102°K by Auger electron spectroscopy. A two-dimensional phase change 2D gas ? 2D solid is emphasized. The solid phase is characterized by low energy electron diffraction. It is a two-dimensional crystal in epitaxy on the graphite. The analysis of the adsorption isotherms measured with a sensivity of 1500 of monolayer, i.e. 1010 atoms, allows to determine the integral heat of adsorption at the two-dimensional phase change (5.5 ± 0.1 kcal mole?1). We also deduced from our measurements, the binding energy of an individual atom of xenon on the (0001) face of graphite, the heat and the entropy of fusion of the two-dimensional crystal.  相似文献   

5.
This paper is the first of three articles devoted to the CO/Mo(110) chemisorption. The experimental study of adsorption and desorption kinetics was performed by several methods: thermal desorption, low energy electron diffraction and Auger electron spectroscopy. The adsorption of CO on Mo(110) presents two different states. For these two states the desorption kinetics are first order ones, the desorption energies and frequency factors have been determined (E1 = 99 kcal mole?1, E2 = 50 kcal mole?1, v1 = 1019 s?1, v2, = 5 × 1010 s?1). The dependence of sticking coefficient on surface coverage θ was investigated and was found different for the two states of adsorption. LEED shows that the adsorption is not ordered. AES investigation suggests that in the two states C and O have different positions with respect to MO atoms.  相似文献   

6.
7.
The interactions between a molecular beam of SiO(g) and a clean and an oxidized tungsten surface were examined in the surface temperature range 600 to 1700 K by mass spectrometrically determined sticking probabilities, by flash desorption mass spectrometry (FDMS) and by Auger electron spectroscopy (AES). The sticking probability, S, of SiO has been determined as a function of coverage and of surface temperature for the clean and the oxidized tungsten surface. Over the temperature range studied and at zero coverage S = 1.0 and 0.88 for the clean and oxidized tungsten surfaces respectively. The results are consistent with both FDMS and AES. For coverage up to one monolayer there is one major adsorption state of SiO on the clean tungsten surface. FDMS shows that Tm = constant (Tm is the surface temperature at which the desorption rate is maximum) and that desorption from this state is described by a simple first order desorption process with activation energy, Ed = 85.3 kcal mole?1 and pre-exponential factor, ν = 2.1 × 1014 sec?1. AES shows that the 92 eV peak characteristic of silicon dominates. In contrast on the oxidized tungsten surface, Tm shifts to higher temperatures with increasing coverage. The data indicate a first order desorption process with a coverage dependent activation energy. At low coverage (θ ? 0.14) there is an adsorption state with Ed = 120 kcal mole?1 and ν = 7.6 × 1019, while at θ = 1.0, Ed = 141 kcal mole?1. This variation is interpreted as due to complex formation on the surface. AES shows that on oxidized tungsten, in contrast to clean tungsten, the dominant peaks occur at 64 and 78 eV, and these peaks are characteristic of higher oxidation states of silicon. Thus, it is concluded that SiO exists in different binding states on clean and oxidized tungsten surfaces.  相似文献   

8.
Characteristics of the adsorption of nitrogen on the (110) plane of tungsten were determined by thermal desorption and work function measurements. The low temperature γ-N2 state desorbs with first order kinetics and an activation energy of 6 kcal mole?1. The absence of isotope mixing between 14N2 and 15N2 demonstrates γ-N2 is adsorbed molecularly. Monolayer coverage shows a decrease of 0.19 eV in work function. A Topping model plot indicates the layer is immobile at 123 K.  相似文献   

9.
The chemisorption of NO on Ir(110) has been studied with thermal desorption mass spectrometry (including isotopic exchange experiments), X-ray and UV-photoelectron spectroscopies, Auger electron spectroscopy,LEED and CPD measurements. Chemisorption of NO proceeds by precursor kinetics with the initial probability of adsorption equal to unity independent of surface temperature. Saturation coverage of molecular NO corresponds to 9.6 × 1014 cm?2 below 300 K. Approximately 35% of the saturated layer desorbs as NO in two well separated features of equal integrated intensity in the thermal desorption spectra. The balance of the NO desorbs as N2 and O2 with desorption of N2 beginning after the low-temperature peak of NO has desorbed almost completely. Molecular NO desorbs with activation energies of 23.4–28.9 and 32.5–40.1 kcal mole?1, assuming the preexponential factor for both processes is between 1013–1016 s?1. At low coverages of NO, N2 desorbs with an activation energy of 36–45 kcal mole?1, assuming the preexponential factor is between 10?2 and 10 cm2s?1. Levels at 13.5, 10.4 and 8.5 eV below the Fermi level are observed with HeI UPS, associated with the 4σ, 5σ and 1π orbitals of NO, respectively. Core levels of NO appear at 531.5 eV [O(1s)] and 400.2 eV [N(1s)], and do not shift in the presence of oxygen. Oxygen overlayers tend to stabilize chemisorbed NO as reflected in thermal desorption spectra and a downshift in the 1π level to 9.5 eV.  相似文献   

10.
The equilibrium segregation in the system W(100) plus two monolayers of total carbon content has been studied in the range 1600 to 2073 K. The energy of segregation is ?56(±2) kcal mole?1. The kinetics of carbon segregation at 1350 and 1420 K were observed. From a semi-empirical treatment an upper limit to the activation energy for volume diffision is deduced to be 59 (±8) kcal mole?1.  相似文献   

11.
The work functions of gold films which were deposited on glass substrates in UHV were 0.5–0.9 eV higher than the work function of a well-baked gold sheet. The contact potential difference between a film and the sheet was reduced by wet air admitted to both surfaces at room temperature. Carbon monoxide admitted to both surfaces reduced the contact potential difference reversibly at pressures from 1 × 10? to 2 × 10?2 torr, and the evidence suggested that most of the change was owing to a reduction in the work function of the gold film. This reduction varied linearly with the gas pressure; it also depended on the temperature; decreasing from 2.8 eV torr? at 17°C to < 0.25 eV torr? at 72°C. The results for CO fitted a simple classical model, from which the mean adsorption energy for CO/Au was estimated as 11.3 ± 0.3 kcal mole?. Ammonia at 17°C caused a similar reduction of work function at much lower pressures, ~ 10?4 torr, and its adsorption energy was estimated as 13.6 kcal mole?1. The films and the sheet gold were polycrystalline with their crystal orientations random in two directions, but their {100} planes were preferentially parallel to the exposed surface. The films were rougher than the sheet. The positive surface potentials for CO/Au and NH3/Au seem to be due either to weakly bound electropositive states, or to their molecules penetrating into the sub-surface region of the film.  相似文献   

12.
The interaction of oxygen with a Pt(110) crystal surface has been investigated by thermal desorption mass spectroscopy, LEED and AES. Adsorption at room temperature produces a β-state which desorbs at ~800 K. Complete isotopic mixing occurs in desorption from this state and it populates with a sticking probability which varies as (1 ? θ)2, both observations consistent with dissociative adsorption. The desorption is second order at low coverage but becomes first order at high coverage. The saturationcoverage is 3.5 × 1014 mol cm?2. The spectra have been computer analysed to determine the fraction desorbing by first (β1) and second (β2) order kinetics as a function of total fractional coverage θ using this fraction as the only adjustable parameter. The β1 desorption commences at θ ~ 0.25 and β1 and β2 contribute equally to the desorption at saturation. The kinetic parameters for β1 desorption were calculated from the variation of peak temperature with heating rate as ν1 = 1.7 × 109 s?1 and E1 = 32 kcal mole?1 whereas two different methods of analysis gave consistent parameters ν2 = 6.5 × 10?7 cm2 mol?1 s?1 and E2 = 29 and 30 kcal mole?1 for β2 desorption. The kinetics of desorptior are discussed in terms of the statistics for occupation of near neighbour sites. While many fea tures of the results are consistent with this picture, it is concluded that simple models considering either completely mobile or immobile adlayers with either strong or zero adatom repulsion are not completely satisfactory. The thermal desorption surface coverage has been correlated with the AES measurements and it has been possible to use the AES data for PtO as an internal standard for calibration of the AES oxygen coverage determination. At low temperature (170 K) oxygen populates an additional molecular α-state. Adsorption into the α- and β-states is competitive for the same sites and pre-saturation of the β-state at 300 K excludes the α-state. This, together with the AES observation that the adsorption is enhanced and faster at 450 than 325 K suggests a low activation energy for adsorption into the β-state.  相似文献   

13.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

14.
The adsorption of oxygen on Rh(111) at 100 K has been studied by TDS, AES, and LEED. Oxygen adsorbs in a disordered state at 100 K and orders irreversibly into an apparent (2 × 2) surface structure upon heating to T? 150 K. The kinetics of this ordering process have been measured by monitoring the intensity of the oxygen (1, 12) LEED beam as a function of time with a Faraday cup collector. The kinetic data fit a model in which the rate of ordering of oxygen atoms is proportional to the square of the concentration of disordered species due to the nature of adparticle interactions in building up an island structure. The activation energy for ordering is 13.5 ± 0.5 kcalmole. At higher temperatures, the oxygen undergoes a two-step irreversible disordering (T? 280 K) and dissolution (T?400K) process. Formation of the high temperature disordered state is impeded at high oxygen coverages. Analysis of the oxygen thermal desorption data, assuming second order desorption kinetics, yields values of 56 ± 2 kcal/ mole and 2.5 ± 10?3 cm2 s?1 for the activation energy of desorption and the pre-exponential factor of the desorption rate coefficient, respectively, in the limit of zero coverage. At non-zero coverages the desorption data are complicated by contributions from multiple states. A value for the initial sticking probability of 0.2 was determined from Auger data at 100 K applying a mobile precursor model of adsorption.  相似文献   

15.
The molecular chemisorption of N2 on the reconstructed Ir(110)-(1 × 2) surface has been studied with thermal desorption mass spectrometry, XPS, UPS, AES, LEED and the co-adsorption of N2 with hydrogen. Photoelectron spectroscopy shows molecular levels of N2 at 8.0 (5σ + 1π) and 11.8 (4σ) eV in the valence band and at 399.2 eV with a satellite at 404.2 eV in the N(1s) region, where the binding energies are referenced to the Ir Fermi level. The kinetics of adsorption and desorption show that both precursor kinetics and interadsorbate interactions are important for this chemisorption system. Adsorption occurs with a constant probability of adsorption of unity up to saturation coverage (4.8 × 1014 cm?2), and the thermal desorption spectra give rise to two peaks. The activation energy for desorption varies between 8.5 and 6.0 kcal mole?1 at low and high coverages, respectively. Results of the co-adsorption of N2 and hydrogen indicate that adsorbed N2 resides in the missing-row troughs on the reconstructed surface. Nitrogen is displaced by hydrogen, and the most tightly bound state of hydrogen blocks virtually all N2 adsorption. A p1g1(2 × 2) LEED pattern is associated with a saturated overlayer of adsorbed N2 on Ir(110)-(1 × 2).  相似文献   

16.
Surface processes in CdTe molecular-beam epitaxy were studied using in situ mass spectrometry. Modulated molecular Cd and Te2 beams were used for measuring kinetic parameters. The experiments were performed at crystal temperatures of 600–730 K. The results were processed within a model in which condensation and evaporation occur through adsorption and desorption stages. The desorption rate was 2–10 s?1 for Te2 and more than 30 s?1 for Cd. The CdTe evaporation activation energy and desorption energies were determined as E ev = 1.1 eV, E d (Cd) = 1.0 eV, and E d (Te) = 0.6 eV. The adsorbate coverage was estimated as n(Cd) < 0.01 and n(Te) = 0.1–1 Te.  相似文献   

17.
Isotope labelling experiments have established that the adsorption of O2 on the W(110) plane at 20 K leads first to the formation of a dissociated atomic layer. A weakly bound molecular species, α-O2, forms only when the atomic layer is essentially complete (O/W = 0.6). The desorption of α-O2 was found to be first order with an activation energy of E = 1.9 kcalmole and a frequency factor γ = 3 × 109 s?1. The activation energy is shown to be less than the enthalpy of desorption and the meaning of this result is discussed.  相似文献   

18.
Sticking coefficients, saturation densities, and solution rates of gases on (100) Ta are obtained by comparing with results on (100) W using Auger electron spectroscopy and flash desorption. Hydrogen has a lower sticking coefficient on (100) Ta than on polycrystalline Ta, but solution occurs readily even at 78°K. Differences between H2 and D2 are observed for both adsorption and solution. Nitrogen is confined to the surface of Ta for T < ≈500°K, and adsorbed nitrogen dissolves with an activation energy of ≈2.5 kcal mole?1 upon heating to higher temperatures. The saturation density of O2 at 300° K is approximately twice that on (100) W. The first monolayer dissolves at ≈500°K but the second dissolves or desorbs only at much higher temperatures. Carbon monoxide adsorbs without solution of either species at 300°K. At ≈500°K carbon dissolves completely leaving oxygen which desorbs at much higher temperature.  相似文献   

19.
The adsorption of acetylene on W(100) at room temperature has been studied by AES, ELS, thermal desorption, mass spectrometry, work function and LEED in one vacuum chamber. AES line profile analysis shows that there are at least two adsorption processes occurring at room temperature. Further, it is possible to explain all the AES results by assuming non-sequential adsorption into just two states, denoted by α and β. This picture was substantiated and embellished by comparison with other standard surface techniques. The α-state comprises either a C2H2 unit with an activation energy for desorption of 2.3 eVmolecule (53 kcal mole?1) or CH units bounded through the carbon of the β-state. Saturation coverage for the α-state is 3 × 1014 molecules cm?2. The β-state is dissociative at low acetylene exposures and comparison between a carbon covered surface and the β-state suggest the latter to be dissociative up to saturation. There also appears to be ca. 1014 hydrogen atoms cm?2 on W(100) on room temperature acetylene saturation, the carbon content of the β-state being 9 × 1014 atoms cm?2. The residual C?C bond from the molecule in the β-state remains unknown. No sign of ordering in the adsorbed species was detected, save the possibility of (1 × 1) in the β-state. Acetylene adsorption at 580 K showed hydrogen from the β-state to block acetylene adsorption by 15% at saturation. A two-site adsorption model for the β-state is proposed to explain the results. The α-state is bonded through the carbon of the β-state and it is speculated that the former adsorbs onto “β” domains where there is a critical minimum size for the latter.  相似文献   

20.
The aim of this study is the measurement of superficial migration coefficient of tritium physisorbed on monocrystalline nickel without chemisorbed sublayer. The chosen crystalline orientation was (111) because it offers the greatest concentration of adsorption sites per square centimeter. A clean surface sample is obtained by mechanical polishing, chemical etching and finally ionic bombardment by high purity argon gas. The pressure in the experimental vessel is maintained below 10?9 torr, by liquid helium cryopumping after zeolite sorption pumping.A little spot of adsorbed tritium is produced by introduction of a finite amount of tritium gas on the clean surface of the nickel sample through a stainless steel tube. Temperatures of nickel and of the gas introduction tube are respectively regulated at 5 K and 35 K. Tritium is used as a radioactive marker and its 10 keV β-radiation is measured by a channeltron type detector which permits the localization of the deposit without acting on the surface. We observed that tritium sorbed at 5 K is quite immobile (at the time scale of our experiment). After heating up to a fixed temperature T chosen between 10 K and 20 K, the deposite profile variation in function of time is observed to determine the superficial diffusion coefficient D. For the values of T from 13 K to 20 K, D varies from 10×10?6 to 150×10?6 cm2 sec?1. A diffusion activation energy of 200 cal mole?1 is deduced from the exponential increase of the curve. A vibrational frequency can be evaluated to 3×1012 sec?1. The rate of desorption permits the evaluation of sorption energy at about 1800 cal mole?1 in good agreement with usual results concerning physorption of H2 on metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号