首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
屠礼勋  孙玉珍 《物理学报》1985,34(7):964-967
使用自制的简易蒸发源,将金属Ga蒸镀在Ni(111)表面上。在亚单层时,用低能电子衍射(LEED)和俄歇电子能谱(AES)观测到Ga在Ni(111)面上形成(3(1/2)×3(1/2))R30°和(2×2)两种超结构。并建立起近似平衡图,粗略地确定了这两种超结构存在的覆盖度和温度范围。 关键词:  相似文献   

2.
Sublimation of deposited germanium sulphide films at the temperatures as low as 350°C results in the appearance of LEED patterns of clean surfaces of germanium. In the interface between Ge(111) or Ge(110) and germanium sulphide, ordered structures are observed, namely Ge(111)?(2 × 1)S and Ge(110)?(10 × 5)S. The conclusion about the structure of the Ge(100) germanium sulphide interface cannot be made unambiguously. The structures of clean Ge(110) surfaces are described. The annealing of clean surfaces of Ge(110) at different temperatures leads to the formation of one of two possible surface structures. After annealing at temperatures below 380°C and above 430°C the Ge(110)?c(8 × 10) clean superstructure is observed. After annealing at temperatures from 380 up to 430°C the surface (110) is rearranged in vicinal planes of the (17 15 1) type with the (2 × 1) superstructure. These structures undergo reversible transitions from one to another at temperatures of about 380 and 430°C.  相似文献   

3.
樊永年 《物理学报》1985,34(6):813-819
用能量为1千电子伏,束流为6微安的氮离子轰击含有痕量碳和氧的钼(001)和钼(110)表面10至15分钟,在俄歇能谱中出现了很强的氮的俄歇峰。从室温直到350℃退火,低能电子衍射观察表明,表面是无序层。样品加热到530℃和650℃之间,在钼(001)表面上得到c(2×2)-氮,p(2×2)-氮和(4(21/2)×21/2)R45°-氮、氧三种结构的低能电子衍射图;在密堆的钼(110)面得到单一结构的c(7×3)-氮的低能电子衍射图。低能电子衍射图与热脱附密切相关 关键词:  相似文献   

4.
Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), electron energy loss (ELS) and ultraviolet photoemission spectroscopies (UPS) were used to study the structures, compositions and electron state distributions of clean single crystal faces of titanium dioxide (rutile). LEED showed that both the (110) and (100) surfaces are stable, the latter giving rise to three distinct surface structures, viz. (1 × 3), (1 × 5) and (1 × 7) that were obtained by annealing an argon ion-bombarded (100) surface at ~600,800 and 1200° C respectively. AES showed the decrease of the O(510 eV)Ti(380 eV) peak ratio from ~1.7 to ~1.3 in going from the (1 × 3) to the (1 × 7) surface structure. Electron energy loss spectra obtained from the (110) and (100)?(1 × 3) surfaces are similar, with surface-sensitive transitions at 8.2, 5.2 and 2.4 eV. The energy loss spectrum from an argon or oxygen ion bombarded surface is dominated by the transition at 1.6 eV. UPS indicated that the initial state for this ELS transition is peaked at ?0.6 eV (referred to the Fermi level EF in the photoemission spectrum, and that the 2.4 eV surface-sensitive ELS transition probably arises from the band of occupied states between the bulk valence band maximum to the Fermi level. High energy electron beams (1.6 keV 20 μA) used in AES were found to disorder clean and initially well-ordered TiO2 surfaces. Argon ion bombardment of clean ordered TiO2 (110) and (100)?(1 × 3) surfaces caused the work function and surface band bending to decrease by almost 1 eV and such decrease is explained as due to the loss of oxygen from the surface.  相似文献   

5.
When submonolayer and monolayer amounts of indium were deposited onto clean Ge(111) surfaces at room temperature and then heated, (13 × 2√3), (12 × 2√3), (11 × 2√3), (10 × 2√3), (4√3 × 4√3) R30°-related, (√31 × √31) R(±9°), (√61 × √61) R(30 ± 4°) and (4.3 × 4.3) structures appeared on the surfaces at fixed In coverages and at fixed surface temperatures. General intensity features of superlattice reflections are derived from intensity estimations by eye of superlattice spots in their RHEED patterns, and some structural characteristics of the superstructures are clarified from the analysis of the general intensity features. The former four superstructures are long-period (2 × 2)-related antiphase structures whose period changes, depending on the coverage. The wavevector characterizing the (13 × 2√3) structure, which appears at the smallest coverage, almost coincides with those of structural fluctuation emerging at the clean Ge(111) (1 × 1) surface around 350°C. The coincidence suggests that the longperiod (2 × 2)-related antiphase structures have a close relationship to the structural fluctuation and, besides, to the (2 × 8) structure in their origin.  相似文献   

6.
The formation of a thin layer of hexagonal Y Si2?x phase on a single-crystal Si(111) substrate by implantation of 195 keV Y ions with a dose of 5×1016Y +/cm2 at room temperature (RT) is investigated. The structural characterization of the as-implanted and annealed samples is performed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD) pole figure and cross-sectional transmission electron microscopy (XTEM). The results show that the orientation relationship between the Y Si2?x layer and Si substrate is Y Si2?x(0 0 0 1)//Si(111) and Y Si2?x[1 1 -2 0]//Si [110].  相似文献   

7.
We present new results obtained with medium energy ion beam crystallography on the clean Si (100)?(2 × 1) surface. This study, meant to discriminate between symmetric and asymmetric dimer models for the reconstruction, shows that symmetric dimers are not consistent with our results. We conclude that the Si (100)?(2 × 1) surface is reconstructed in asymmetric dimers, accompanied by extensive subsurface distortions.  相似文献   

8.
Oxygen adsorption on clean Mo (100) surfaces has been studied by LEED, AES, work function changes and energy loss spectroscopy. At room temperature, the oxygen uptake as determined by AES is linear up to one third of the saturation value. Data obtained with CO adsorption have been used to determine the oxygen coverage. With increasing oxygen exposure LEED shows three stages: a c (2 × 2) phase growing simultaneously with a (6 × 2) structure, a stage with (110) microfacets covered by two-dimensional structures and finally a p (3×1) structure together with a p (1×1) structure, probably due to an oxide phase. Even in the low temperature range (370–500 K) remarkable effects are observed: adsorption at 370 K produces a disordered c (4×4) structure which is followed by a (√5 × √5)?R 26° 33 structure. The same occurs when the inital c (2 × 2) structure formed at 295 K is heated above 370 K. Measurements of the work function indicate a minimum at the end of the c (2×2) structure, then a rapid increase and at saturation a value of about 1.5 V above that of the clean surface. Energy loss spectroscopy measurements point to an increase of the surface plasmon energy during the faceting stage. New transitions are observed which are due to new electronic levels induced by the adsorption. They are comparable with photoemission results on W and Mo.  相似文献   

9.
The adsorption of oxygen on Ag(110), (111), and (100) surfaces has been investigated by LEED, Auger electron spectroscopy (AES), and by the measurement of work function changes and of kinetics, at and above room temperature and at oxygen pressures up to 10?5Torr. Extreme conditions of cleanliness were necessary to exclude the disturbing influences, which seem to have plagued earlier measurements. Extensive results were obtained on the (110) face. Adsorption proceeds with an initial sticking coefficient of about 3 × 10?3 at 300 K, which drops very rapidly with coverage. Dissociative adsorption via a precursor is inferred. The work function change is strictly proportional to coverage and can therefore be used to follow adsorption and desorption kinetics; at saturation, ΔΦ ≈ 0.85 eV. Adsorption proceeds by the growth of chains of oxygen atoms perpendicular to the grooves of the surface. The chains keep maximum separation by repulsive lateral interactions, leading to a consecutive series of (n × 1) superstructures in LEED, with n running from 7 to 2. The initial heat of adsorption is found to be 40 kcal/mol. Complicated desorption kinetics are found in temperature-programmed and isothermal desorption measurements. The results are discussed in terms of structural and kinetic models. Very small and irreproducible effects were observed on the (111) face which is interpreted in terms of a general inertness of the close-packed face and of some adsorption at irregularities. On the (100) face, oxygen adsorbs in a disordered structure; from ΔΦ measurements two adsorption states are inferred, between which a temperature-dependent equilibrium seems to exist.  相似文献   

10.
A (√2 × √2)R45° surface structure on W {001} produced only by cooling below ~370 K, first reported by Yonehara and Schmidt, has been investigated by LEED, AES, work function change, characteristic loss and low energy Auger fine structure measurements. No significant changes at any energy up to 520 eV occur in the standard Auger spectrum upon cooling to 220 K for as long as 30 min after a flash to >2 500 K. The work function of the (√2 × √2) R45° at 210 K is 20 ± 10 mV below that of the (1 × 1) surface, and a sensitive feature in the fine structure of the N7VV AES transition shows approximately 60% attenuation. Unlike for H2 adsorption, the “surface plasmon” loss peak exhibits little if any measurable attenuation and no measurable shift in energy as the crystal cools to form the (√2 × √2)R45°. The rate of intensity buildup in the 12-order LEED beams is strictly temperature dependent, and significant differences exist between the 12-order LEED spectra produced by cooling and those produced by H2 adsorption. Only 2-fold symmetry was observed in the LEED beam intensities at exactly normal incidence, rather than 4-fold as expected for statistically equal numbers of rotationally equivalent domains. The LEED I-V spectra for 24 fractional order beams and 12 integral order beams, taken over large energy ranges at normal incidence, clearly establish that the beam intensities display 2 mm point group symmetry, and hence a preference of one domain orientation over the other. No beam broadening or splitting effects were apparent, implying only incoherent scattering from the various domains. The half-order beam spectra (±h/2, ±h/2) are identical in relative intensity to the (±h/2, ±h/2) spectra but different in absolute intensity by a constant factor, which can be explained only by domains with p2mg space group symmetry rather than just p2mm. Adsorption of H2 onto the cooled (√2 × √2)R45° structure restores the 4-fold symmetry in the LEED beam intensities at normal incidence, giving a c(2 × 2) hydrogen structure, the same as when adsorbing H2 onto the above room temperature (1 × 1) crystal. This strongly supports the observed p2mg symmetry as being a true property of the cooled (√2 × √2)R45° surface structure. These results show that the (1 × 1) → (√2 × √2) R45° transition produced by cooling is a transition involving displacement of surface W atoms, and that it apparently can be characterized as an order-order, second degree, homogeneous nucleation process, which is strongly prohibited by the presence of impurities or defects.  相似文献   

11.
Adsorption of CO on W(110) at 100 K produces a number of ordered LEED patterns as coverage increases, culminating in a p(5 × 1) pattern for a full virgin CO layer. The beta-1 layer obtained by heating a virgin layer to 400 K has a p(2 × 1) structure. Absolute coverages, obtained by comparison of XPS intensities (and Auger intensities where feasible) with those of oxygen on tungsten at O/W = 0.5 indicate that CO/W ? 0.8 for the full virgin layer and ? 0.3 for beta-1. These results, together with the LEED data, indicate that low temperature adsorption of virgin CO is not very site specific, and that beta-1 must be dissociated with C and O lying along alternate closepacked rows of W. XPS results for the oxygen 1s peak show that the latter shifts in beta and beta-1 from its position in virgin CO to an energy equal to that seen for pure oxygen on tungsten. A number of electron impact desorption results are also presented, and the nature of the various binding states of CO on this plane is discussed.  相似文献   

12.
The hydrogen-induced reconstruction on a high step density W(001) crystal, (2×2)R45°-H, with steps oriented parallel to the [110] and ~ 28 Å average terrace width has been investigated using LEED symmetry, beam shape analyses, and EELS. The symmetry of the LEED pattern is observed to change from p2mg for the (2×2)R45° clean surface reconstruction to c2mm for the commensurate phase (2×2)R45°-H reconstruction. Correspondingly, the shapes of the half-order beams indicate that the hydrogen-induced reconstruction domains are much less elongated than the clean surface domains. A splitting of each half-order beam into four beams at higher exposures indicates the existence of two domains of the incommensurate phase. A commensurate phase v1 vibrational loss peak centered at 160 meV in the EELS spectrum broadens on the low-energy side during the incommensurate phase and then shifts toward 130 meV and narrows as the (1×1)-H saturation structure develops. These observations imply that there is no long-range inhibition ( ~ 20 Å) to the formation of either commensurate or incommensurate phase; hydrogen induces a switching of the atomic displacements from 〈110〉 directions on a clean surface to 〈100〉 directions, even with steps oriented parallel to the [110]; and in the incommensurate phase there is a distribution of hydrogen site geometries with the most probable geometry more like the commensurate phase geometry than the saturation phase geometry.  相似文献   

13.
A detailed LEED study is reported of the surface phases stabilised by hydrogen chemisorption on W {001}, over the temperature range 170 to 400 K, correlated with absolute determinations of surface coverages and sticking probabilities. The saturation coverage at 300 K is 19(± 3) × 1014 atoms cm?2, corresponding to a surface stoichiometry of WH2, and the initial sticking probability for both H2 and D2 is 0.60 ± 0.03, independent of substrate temperature down to 170 K. Over the range 170 to 300 K six coverage-dependent temperature-independent phases are identified, and the transition coverages determined. As with the clean surface (2 × 2)R45° displacive phase, the c(2 × 2)-H phase is inhibited by the presence of steps and impurities over large distances (~20 Å), again strongly indicative of CDW-PLD mechanisms for the formation of the H-stabilised phases. These phases are significantly more temperature stable than the clean (2 × 2)R45°, the most stable being a c(2 × 2)-H split half-order phase which is formed at domain stoichiometries between WH0.3 and WH0.5. LEED symmetry analysis, the dependence of half-order intensity and half-width on coverage, and I-V spectra indicate that the c(2 × 2)-H phase is a different displacive structure from that determined by Debe and King for the clean (2 × 2)R45°. LEED I-V spectra are consistent with an expansion of the surface-bulk interlayer spacing from 1.48 to 1.51 Å as the hydrogen coverage increases to ~4 × 1014 atoms cm?2. The transition from the split half-order to a streaked half-order phase is found to be correlated with changes in a range of other physical properties previously reported for this system. As the surface stoichiometry increases from WH to WH2 a gradual transition occurs between a phase devoid of long-range order to well-ordered (1 × 1)-H. Displacive structures are proposed for the various phases formed, based on the hypothesis that at any coverage the most stable phase is determined by the gain in stability produced by a combination of chemical bonding to form a local surface complex and electron-phonon coupling to produce a periodic lattice distortion. The sequence of commensurate, incommensurate and disordered structures are consistent with the wealth of data now available for this system. Finally, a simple structural model is suggested for the peak-splitting observed in desorption spectra.  相似文献   

14.
The monochromatized electron beam of a high resolution electron energy loss (HREEL) spectrometer is used for accurate (±5 meV) measurement of the work function changes during exposure of a Ag(110) single crystal surface to oxygen. Absolute calibration of the results is made by comparison with Kelvin probe data. The procedure allows the precise determination of the electron impact energy, which is an important parameter for quantitative HREELS analysis. Furthermore, in the case of oxygen adsorbed on Ag(110), the occurrence of several LEED (n×1) superstructures enables a calibration of the HREELS data with respect to surface coverage.  相似文献   

15.
The reaction of a clean Ti (0001) surface with oxygen gas at low pressure and room temperature has been studied with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). At low exposures (about 1 Langmuir) ap(2×2) superstructure is observed which gradually converts to 1×1 at high exposures (about 100 Langmuirs). The LEED spectra confirm that the final 1×1 structure is different from that of clean Ti (0001), while the AES spectra indicate that the final oxide is probably TiO, not TiO2. The plausibility of this indication is discussed.  相似文献   

16.
R.J. Behm  G. Ertl  V. Penka 《Surface science》1985,160(2):387-399
The formation of ordered adlayers of CO on Ni(110) and the correlation between structure and adsorption energy, sticking coefficient and adsorbate induced change of work function was investigated. LEED, TDS and work function measurements served to monitor adsorption and desorption. Models are presented for the structures formed at intermediate coverages (0.5 < θ < 0.85) - identified as a c(8×2) and a c(4×2) structure - and the (2×1) formed close to saturation: The CO molecules are adsorbed on the Ni rows in the [110] direction, their separation is dominated by short range COCO repulsions rather than by the NiCO interaction. The repulsions in the [001] direction lead only to the formation of structures with staggered configurations. In the first two structures formed only below room temperature the CO stands upright and the repulsion is weak, leading to considerable disorder (antiphase domains) and a streaky LEED pattern. In the (2×1) structure which does not thermally disorder in the experimental temperature range, the high density of the adlayer results in a lateral tilt of the CO, and subsequently also to good correlation in the [001] direction. The repulsions become evident in TDS as a low temperature shoulder at the main peak (c(8×2) and c(4×2) structure) or as a distinct extra peak at 330 K ((2×1) structure). The adsorption kinetics can be modelled by a first order precursor model (K = 0.95). The work function almost linearly increases with coverage to 1500 mV at saturation. Both quantities are not noticeably affected by the degree of order in the adlayer.  相似文献   

17.
Surface structures and compositions of the CuAu alloys have been investigated, which were prepared by depositing gold on (110) and (111) surfaces of copper and by subsequent heating. By this method the structure of alloy surfaces corresponding to different compositions can be observed by LEED. A series of the LEED patterns, streak, (1 × 2), (1 × 1)I, complex, c(3 × 1), (1 × 1)II, (2 × 2) and (1 × 1) have been observed on the (110) surface with decreasing gold composition. On the (111) surface (1 × 1) pattern, weak (2/√3 × 2/√3)R30° and (2 × 2) patterns are observed. The mean surface composition is determined by analysing the data of Auger electron spectroscopy. Most surface periodicities observed are different from those expected if one passes a mathematical plane through the crystal (unreconstructed surface).  相似文献   

18.
The interaction of methane with Ni(110) was studied with AES, LEED and ellipsometry. Sticking coefficients were determined in the temperature range 298–600 K at methane pressures of 10?4–10?2 Torr. The carbon coverages were derived from Auger spectra by calibration with ellipsometry. At room temperature no detectable adsorption was observed without use of electron sources. In the temperature range 473–579 K the coverage versus exposure curves show an induction effect at low coverage followed by an almost linear increase up to a saturation coverage of about 13 monolayer of carbon. At these temperatures a Ni(110)-(2 × 3)-C structure was observed with streaks in the direction of constant h. The observed behaviour is explained with a nucleation and growth model in which mobile carbon species are captured at the edges of surface nickel carbide islands. At temperatures above 600 K carbon diffuses into the bulk and the Ni(110)-(4 × 5)-C superstructure is observed.  相似文献   

19.
The characterisation of the Cs/ZnO system using LEED and AES, results in the observation of new superstructures on the (0001)—O polar surface, a (2 × 2) structure and a combined (2 × 2) and (√3 × √3) configuration. A possible explanation is proposed for the existence of these superstructures in terms of electrostatic energy calculations.  相似文献   

20.
The (110) face of a tungsten single crystal was found to be partially reconstructed after an exposure, at 300 K, of 300 L of nitric oxide. This surface liberated N2 when heated to 975 K, after which the reconstruction appeared to have been completed. At this stage a well developed c(11 × 5) LEED pattern was observed and a surface oxide, W3O2, is proposed for this reconstructed surface. The above mentioned surface reconstructs again after further heat treatment and is characterised by a weak p(2 × 2) LEED pattern. Work function measurements and the thermal stability of this surface structure indicate that the latter is not the same as that produced by oxygen adsorption on W(110).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号