首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni79Fe21(5)/Ir22Mn78(12)/Co60Fe20B20(4)/Al(1)–oxide/Co60Fe20B20(6)/Al(1)–oxide/Co60Fe20B20(4)/Ir22Mn78(12)/Ni79Fe21(5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nm×400 nm, 200 nm×200 nm nano-scale were prepared and their RH, IV characteristics were measured.  相似文献   

2.
The soft magnetic properties of the substrate/[non-buffer or buffer Ta]/[permalloy (Ni80Fe20) or conetic (Ni77Fe14Cu5Mo4)]/Ta prepared by ion beam sputter deposition are investigated. The value of the surface resistance of the conetic film is twice as high as that of the permalloy film. The value of the coercivity and magnetic susceptibility of the conetic film decreased by 25% and doubled relative to that of the permalloy film. The coercivity, with a value of 0.12 Oe, and the magnetic susceptibility, with a value of 1.2×104 for the conetic film, are suitable for soft magnetic biosensor applications.  相似文献   

3.
Magnetic nanocomposite SrFe12O19/Ni0.7Zn0.3Fe2O4 powders with different weight fractions of the Ni0.7Zn0.3Fe2O4 soft ferrite were synthesized by a combination of the sol–gel self-propagation and glyoxilate precursor methods. The results of magnetic measurements revealed the higher Mr/Ms ratio for the nanocomposites than that for the single phase SrFe12O19 which proves the existence of the intergrain exchange coupling between hard and soft magnetic phases with the exchange spring behavior. The highest Mr/Ms ratio of 0.63 was obtained in the composite consisting of 80 wt% of SrFe12O19 and 20 wt% Ni0.7Zn0.3Fe2O4. The microstructural studies of this sample exhibited the average dimensions of hard and soft phases about 20 nm and 15 nm, respectively which are small enough for strong exchange coupling according to the theoretical studies. The variations of the reduced remanence (Mr/Ms) with increasing the weight fraction of the soft phase could be also explained by the role of the exchange and dipolar interactions in tuning the magnetic properties of the nanocomposites.  相似文献   

4.
We demonstrate ultra-high-resolution magnetic force microscopy images of perpendicular magnetic storage media using carbon nanotube probes coated by ferromagnetic Co90Fe10 films (20, 30, 40, and 50 nm). By optimizing ferromagnetic film thickness (effective tip diameter), we obtained best magnetic domain image with an 40 nm-Co90Fe10-coated tip (50 nm tip diameter) about a lateral detect density of 1200 k flux per inch on perpendicular magnetic storage medium, one of the highest resolutions in MFM imaging reported for this material system and structure. The observed dependence of tip dimension on signal contrast and image resolution was successfully explained by a theoretical analysis indicating that the signal contrast, along with the physical probe-tip dimension, should be taken into account to design magnetic probes tips for high-resolution magnetic force microscopy.  相似文献   

5.
The influence of isothermal annealing (1 h at 600 °C in Ar atmosphere) on the soft magnetic properties and magnetoimpedance (MI) effect has been studied in ribbons of the following Nanoperm alloys: Fe91Zr7B2, Fe88Zr8B4, Fe87Zr6B6Cu1 and Fe80Zr10B10. A maximum MI ratio of about 27% was measured for the nanocrystalline alloy Fe87Zr6B6Cu1 at a driving frequency of 0.2 MHz. The thermal annealing led to magnetic softening for this alloy, while a hardening is observed for the Fe80Zr10B10 alloy.  相似文献   

6.
This paper investigates structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni58Fe12Zr10Hf10B10 powders prepared by high energy milling. Ball milling of Ni, Fe, Zr, Hf and B leads to alloying of the element powders at 120 h. The results show that at 190 h the amorphous content is at the highest level and the grain size is about 2 nm. The magnetic measurements reveal that the coercivity and the saturation magnetization reach about 20 Oe and 30 emu/g at 190 h and become approximately 5 Oe and 40 emu/g after a suitable heat treatment, respectively.  相似文献   

7.
Structural and magnetic properties of two rapidly solidified and post-annealed Fe60Pt15B25 and Fe60Pt25B15 alloys are compared. The as-quenched Fe60Pt15B25 ribbon was fully amorphous whereas in the Fe60Pt25B15 alloy the amorphous phase coexists with an fcc FePt disordered solid solution. Differential scanning calorimetry curves of both alloys reveal a single exothermal peak with onset temperatures of 873 and 847 K for Fe60Pt15B25 and Fe60Pt25B15, respectively. Magnetically hard, tetragonal ordered L10 FePt and magnetically soft Fe2B nanocrystalline phases were formed due to the annealing of the alloys, as indicated by X-ray diffraction and Mössbauer spectroscopy measurements. Two-phase behavior was detected in the temperature dependence of magnetization of the annealed samples. A magnetic hardening was observed for all annealed ribbons. Magnetic properties of the annealed alloys, studied by hysteresis loop measurements, were related to the differences in the relative fractions of the hard and soft magnetic phases calculated from Mössbauer spectra. The alloy with 25 at% Pt exhibits better hard magnetic properties (Hc=437 kA/m, Mr/Ms=0.74) than the alloy with smaller Pt content (Hc=270 kA/m, Mr/Ms=0.73) mainly due to the larger abundance of the ordered tetragonal FePt phase.  相似文献   

8.
Co19Ni49.6Fe31.4 layer was electrodeposited onto a twisted Cu wire and helical anisotropy was induced in the magnetic Co19Ni49.6Fe31.4 shell. The magnetic and coil-less fluxgate (CF) properties are presented. The Co19Ni49.6Fe31.4/Cu wire, produced at zero torsional strain, shows a CF output of nearly zero. The samples produced under torsional strains of 29.5π and 59π rad/m show a linear change in CF output in the low-frequency range. At higher frequencies the CF output shows two linear ranges. A maximum sensitivity of 150V/T is observed at 20 kHz driving-current frequency and 67 mA driving current for a wire produced under 59π rad/m torsional strain. It is also found that the slope of the CF curve depends on the direction of induced anisotropy.  相似文献   

9.
The Fe65B22Nd9Mo4 nanocomposite permanent magnets in the form of a rectangular cross sectioned rod have been prepared by annealing the amorphous precursors. The thermal behavior, structure and magnetic properties of the magnets have been investigated by differential scanning calorimetry, X-ray diffractometry, electron microscopy and magnetometry techniques. The as-cast Fe65B22Nd9Mo4 alloy showed soft magnetic properties, which changed into magnetically hard after annealing. Results provoke that the magnetic properties of the alloy are sensitive to thermal processing conditions. The optimum hard magnetic properties with a remanence (Br) of 0.56 T, coercivity (iHc) of 920.7 kA/m and maximum energy product (BH)max of 50.15 kJ/m3 were achieved after annealing the alloy at 983 K for 10 min. The good magnetic properties of Fe65B22Nd9Mo4 magnets are ascribed to the exchange coupling between the nano-scaled soft α-Fe, Fe3B and hard Nd2Fe14B magnetic grains.  相似文献   

10.
The Fe14.5Co16.5Ni55B15 and the Fe13Co15.5Ni51.5B20 ferromagnetic nanowires were deposited using the electrochemical deposition method. The structure of these nanowires was investigated using X-ray diffraction. Squid magnetometer was used to investigate the magnetic behavior. The hysteresis loops of 50 μm long nanowire arrays were studied as a function of boron concentration, nanowire diameter and field orientation. The competition between shape anisotropy and magnetostatic interactions played a vital role in determining the magnetic field necessary to saturate an array. The decrease in coercive field (Hc) and the squareness (SQ) of the hysteresis loop from 100 to 200 nm wire diameter for both types of compositions suggests the formation of multidomains in the nanowire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号