首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Communications》2003,128(11):407-411
We report the optical and structural properties of PbS nanoparticles in zeolite A. The samples were obtained by sulfidation of the Pb2+ ion-exchanged zeolite in a thiourea solution at 50 °C. The optical properties of the samples were studied by diffuse reflectance spectroscopy. Their crystalline structure and morphology were studied by electron diffraction and by transmission and scanning electron microscopy. The results show that the nanoparticles are not inside the zeolite cages but outside, embedded in the zeolite matrix. Exciton absorption peaks at much higher energy than the fundamental absorption edge of bulk PbS indicate quantum confinement effects in the spherical shape nanoparticles as a consequence of their small size.  相似文献   

2.
Samples with different weight ratio of Se to zeolite 5A (Se composition) have been prepared by loading Se into the cages of zeolite 5A and the measurements of the absorption and Raman spectra have been carried out for the prepared samples. The measured absorption edges of the samples are close and blue shifted to the value for monoclinic Se containing Se8-ring, suggesting the formation of Se8-ring clusters in the cages. The continuous and broadening features of the absorption spectra are interpreted by the strong electron-phonon coupling in Se8-ring clusters. The sample with high Se composition has a red shift of the absorption band edge relative to the samples with less Se composition. It is tentatively attributed to the reason that with different Se composition, single Se8-ring clusters and double Se8-ring clusters are formed in the cages of zeolite 5A. A single broad band at about 262 cm−1 is observed in the Raman spectra, that gives the further support of the formation of Se8-ring clusters.  相似文献   

3.
掺杂有Ⅱ-Ⅵ族半导体纳米颗粒(如CdS)或者过渡金属(如Ag)的玻璃由于其较大的非线性光学效应而引起人们的极大兴趣,而同时掺杂有半导体/金属的复合微粒则可以进一步增强玻璃的三阶非线性效应,因此成为目前的研究热点。我们利用玻璃沉淀技术及随后的热处理和紫外光还原技术制备了含高浓度(1%)Ag微粒的玻璃,并采用X射线衍射分析了其物相,用高分辨扫描电镜分析了其形貌,以及测试了其吸收和发光性能。从CdS/Ag复合微粒的扫描照片可以发现晶粒均匀分布在玻璃中,尺寸约为1μm。X射线衍射发现经过热处理和紫外光照的样品衍射峰中含有CdS和Ag,而只进行热处理的样品则只含有CdS,未处理的样品则显非晶态。CdS/Ag复合微粒的吸收峰呈现典型的表面等离子共振峰(420nm)以及CdS的峰(600nm),只含有CdS微粒的样品的吸收峰则在480nm附近,未处理的样品在320nm附近有一个吸收峰,这可能是由于样品在快速冷却过程中的微小晶化造成的。只含有CdS微粒的样品有三个明显的发光峰,然而CdS/Ag复合微粒的发过峰则消失。我们提出了共振能量转移机制来解释该现象。讨论了紫外光照还原Ag微粒的机制。可以认为通过紫外光照,CdS表面的电子被激发出来还原Ag+,从而形成银颗粒,伴随着空穴则被表面缺陷所捕获。  相似文献   

4.
Surface enhanced Raman scattering is studied in nanostructures with CdS quantum dots formed using the Langmuir-Blodgett technology. Features due to quantum dot longitudinal optical phonons are observed in the Raman spectra of both free CdS quantum dots and such dots distributed in an organic matrix. The surface enhanced Raman scattering by nanostructures with CdS quantum dots covered by an Ag cluster film is observed experimentally. Applying Ag clusters onto the nanostructure surfaces results in a sharp (40-fold) increase in the intensity of Raman scattering by optical phonons in the quantum dots. It is shown that the dependence of surface enhanced Raman scattering on the excitation energy is resonant with a maximum at the energy corresponding to the maximum absorption coefficient of Ag clusters.  相似文献   

5.
Core–shell CdS/ZnS nanoparticles in arachidic acid film were prepared through a novel Langmuir–Blodgett (LB) approach. Post-deposition treatment of the precursor LB multilayers of cadmium arachidate with H2S gas followed by intercalation of Zn2+ ions and further sulfidation result in the formation of CdS/ZnS nanoparticles in the LB film. The formation of these nanoparticles and resulting changes in layered structures were studied by FTIR and X-ray reflection measurements. The optical properties were studied using UV–vis absorption and photoluminescence spectroscopy. A red-shift in the absorption spectrum and enhancement of CdS excitonic emission together with reduction of surface states emission suggest that after the intercalation step, a thin layer of ZnS surrounds the CdS nanoparticles, thus forming a core–shell structure. Subsequent to the second sulfidation, a further red-shift in absorption suggests the formation of a thicker ZnS coating on CdS. Electron diffraction of CdS nanoparticles coated with thicker ZnS showed the diffraction patterns of only ZnS, as expected for core–shell structures.  相似文献   

6.
Optical properties of nanomaterials such as semiconductor and metal quantum dots are important for sensors and photovoltaic applications. We report on optical, microscopic, and AFM investigations on bulk and single nanoobjects such as metal and semiconducting nanoparticles. Firstly, of special interest is the investigation of Ag metal nanoaggregates formed in zeolites. Here, the defined structure of the zeolite serves both as size directing and a stabilizing agent. The size selected Ag aggregates fluoresce in the zeolite cages even after storage under ambient conditions for almost one year. In addition, single Ag particles escape the cages and can be investigated by fluorescence microscopy also with respect to sensor applications. Secondly, with respect to photovoltaic applications, energy transfer among organic dye molecules and semiconductor quantum dots is of great importance. We report on the extension of the optical absorption of ZnSe quantum dots into the UV regime and investigate excitation energy transfer within self-assembled nanoaggregates of surface functionalized QDs and fluorescent styrylpyridine dyes.  相似文献   

7.
CdS掺Mg和Ni电子结构和光学性质的密度泛函理论研究   总被引:2,自引:4,他引:2  
熊志华  饶建平  江风益 《光学学报》2007,27(12):2225-2228
采用基于密度泛函理论的第一性原理赝势平面波方法,对闪锌矿结构CdS和CdS∶M(M=Mg,Ni)几何结构、能带结构、电子态密度和光学性质进行了系统的研究。几何结构研究对掺杂后体系晶格常量进行了优化计算,结果表明Mg和Ni原子掺入CdS后晶格常量均减小,晶格发生局部畸变。进一步研究了掺杂对体系电子结构的影响,能带结构和电子态密度分析表明由于Ni 3d电子的引入使CdS∶Ni成为半金属铁磁半导体,而Mg 3s电子的引入CdS∶Mg带隙变宽。另外,体系掺杂后,吸收系数分析表明掺杂导致吸收峰在可见光波长区域变化显著,且掺Ni导致吸收峰进一步向长波方向移动。  相似文献   

8.
Cadmium sulfide semiconductor nanoparticles along with terbium ions were incorporated in silica xerogels through sol–gel route. The optical absorption and emission spectra confirmed the formation of CdS nanoparticles along with terbium ions in the silica gel. The optical bandgap and size of the CdS nanoparticle were calculated from the absorption spectrum. The TEM measurement was also used to evaluate the average size of the CdS nanoparticles. The fluorescence spectra reveal that the intensity of characteristic emission of terbium ions increases considerably in the presence of CdS nanoparticles even in the gel stage itself and this avoids the need of heating gels at high temperatures. The branching ratios were calculated from the emission spectra using the standard procedure.  相似文献   

9.
《Current Applied Physics》2003,3(2-3):257-262
The optical absorption and photoluminescence (PL) properties of nanosize CdS clusters synthesized by chemical bath deposition technique using precursor chemicals of high purity CdCl2, thiourea and NH4Cl are presented. The crystallite sizes were controlled by the reaction rate, concentration of the reactants of the chemical bath and thickness of the film. Relative to bulk crystals, the band gap (Eg∼2.5 eV) of CdS clusters is significantly blue-shifted with decreasing cluster size. CdS nanoclusters present a mixed hexagonal/cubic structure, which indicates that CdS formation occurs primarily via “ion-to-ion” process. Scanning electron microscopic studies of CdS films revealed that the films are composed of domains, which are formed from the coalescence of smaller crystallites. The PL excitation band is interpreted as an excitation of CdS molecular levels in the interior of the cluster. Results on Ag2S alloying with the CdS nanoclusters show that surface related states of one material can be excited through states of a different interior material.  相似文献   

10.
A series of novel wurtzite cadmium sulphide (CdS) nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. CdS nano structures with certain morphology could be selectively produced by only varying the concentration of poly ethylene glycol (PEG) as a surfactant in the reaction system with cadmium acetate, sulphur powder and ethelynediamine (EDA). We extensively studied UV-vis absorption spectra, photoluminescence spectra after confirming CdS nanowires with diameter 24-25 nm and length ranging up to several nano meters by field emission scanning electron microscopy (FE-SEM). Therefore we may definitely propose a new formation mechanism of CdS nanowires assisted by PEG with its illustrating optical properties.  相似文献   

11.
CdP2 nanoclusters were fabricated by incorporation into pores of zeolite Na–X and by laser ablation. Absorption and photoluminescence (PL) spectra of CdP2 nanoclusters in zeolite were measured at the temperatures of 4.2, 77 and 293 K. Both absorption and PL spectra consist of two bands blue shifted with respect to bulk crystal. We performed the calculations aimed to find the most stable clusters in the size region up to size of the zeolite Na–X supercage. The most stable clusters are (CdP2)6 and (CdP2)8 with binding energies of 9.30 and 10.10 eV per (CdP2)1 formula unit, respectively. Therefore, we attributed two bands observed in absorption and PL spectra to these stable clusters. The Raman spectrum of CdP2 clusters in zeolite was explained to be originated from (CdP2)6 and (CdP2)8 clusters as well. The PL spectrum of CdP2 clusters produced by laser ablation consists of the asymmetric band with low-energy tail that has been attributed to emission of both (CdP2)8 cluster and CdP2 microcrystals.  相似文献   

12.
The incorporation of selenium into the supercages of zeolite Y leads to the formation of Se 8 rings and distorted Se chains in a ratio which is influenced by the nature of the zeolitic cations. Here we review Raman (including resonance Raman) and UV/vis absorption spectroscopy results on Se encapsulated into a number of cation-exchanged faujasite zeolites. Both rings and chains give rise to characteristic Raman bands. In particular, low-frequency Raman bands are attributed to localized vibrations in ordered segments of distorted chains. The UV/vis absorption spectra indicate an opening of the band gap of selenium upon confinement in these zeolites. This can be reversed through electronic interaction with zeolite cations.Received: 1 January 2003, Published online: 14 October 2003PACS: 78.30.-j Infrared and Raman spectra - 82.75.Mj Measurements and simulation of properties (optical, structural) of molecules in zeolites  相似文献   

13.
In this work, the linear and nonlinear optical properties are studied theoretically in asymmetric (CdS/ZnSe/BeTe)/(ZnSe/BeTe) quantum wells. The electronic states are calculated using the envelope wave function approximation and the intersubband transition energies are studied as a function of CdS and ZnSe well thicknesses as well as doping concentration. The optimum parameters carrying out the transition energy 0.8 eV (1.55 μm wavelength) are given. Results are presented for the linear, the third order nonlinear optical absorption and the refractive index changes in the studied heterostructure. Results show that the changes in the linear and the third order nonlinear optical absorption as well as refractive index change are as important as the temperature is high, the nonlinear terms must be taken into consideration especially near the resonance.  相似文献   

14.
The influence of size and shape for nanocrystallines (NC) of semiconducting materials (like GaN, ZnO, CdS, ZnS with sizes about 20-30 nm) incorporated into olygoetheracrylate polymer matrices on photoinduced optical properties, particularly the two-photon absorption (TPA), was investigated. We have shown that maximal values of the TPA diagonal tensor component was observed at low temperatures for the GaN NC (about 4.2 K), which corresponds to a NC concentration of 2.6-3.2 wt.% and size of about 24 nm. The shape and value of ellipticity play crucial roles in the observed non-linear optical phenomena. This contradicts the generally adopted model wherein the non-linear optical properties are mainly determined by averaged NC sizes. The observed temperature dependence is explained within a framework of anharmonic electron-phonon interaction in the large-sized nanocrystallites.  相似文献   

15.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

16.
Sm3+ doped CdS nanoparticles have been prepared by sol-gel method. The effect of annealing temperatures and doping concentrations of CdS on the photoluminescence spectra of Sm3+ were studied. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4, and Ω6) have been computed and used to parameterize the radiative properties. The influences of CdS on Sm3+ ions were studied by fluorescence spectroscopy. The fluorescence spectra revealed that the emission intensity of samarium increased considerably in the presence of CdS nanoparticles. The evaluation of radiative properties of Sm3+ containing CdS showed that the 4G5/26H7/2 transition in silica matrix had the potential to be a laser transition.  相似文献   

17.
Jatar  S  Rastogi  A C  Bhide  V G 《Pramana》1978,10(5):477-486
Photoelectric properties of pure and Al doped vacuum deposited CdS films have been studied to explore the possibility of their application in photoactivated liquid crystal light valves. The effect of heat treatment in oxygen atmosphere, rate of deposition and the extent of Al doping, etc. on the resistivity, photo-response spectral characteristics, rise and decay time of photo-current, etc. have been investigated. It has been found that in contrast to pure CdS films, the properties of Al-doped films significantly depend on both the rate of deposition and the extent of Al doping. The dark resistivity in all cases was found to increase with heat treatment in oxygen. Unlike pure CdS films, Al doped films show photo-conductivity which is enhanced by heat treatment. Al doped films deposited at higher rates show better photo response even at lower light levels. At various light levels the rise and decay time of Al-doped films were found to be fairly constant and lower than that for pure CdS films. All these properties have been explained in terms of the presence of trapping levels due to doping. These trapping levels are also indicated by TSC, optical absorption and EPR studies.  相似文献   

18.
Freshly prepared CdS-quantum dots (QDs) in DMF (clear pale solution) when loaded in polymethylmethacrylate (PMMA) lead to excellent optical properties. The tuning of the absorption and emission wavelengths via experimentally control parameters is considered novel and significant. The absorption band for CdS was observed at about 370 nm in polymeric matrix. The blue, green and orange light emissions from such composite solution were tuned and stabilized by simply varying the concentration of CdS, cadmium and sulphur in the final product. Photoluminescence (PL) measurement with 2% CdS loading showed band-edge emissions from the composite with only about 20-25 nm Stokes shift in emission wavelength. Observation of such optical properties indicated that the composite has narrow particle size distribution and particle diameter may well be below 10 nm. X-ray diffraction (XRD) patterns of the film with higher loading of CdS showed broad pattern for hexagonal CdS. Thermo-gravimetric analysis (TGA) of CdS/PMMA composite film revealed that it has better thermal stability than PMMA alone. Transmission electron microscopy (TEM) showed agglomerated tiny dots in nano-meter regime.  相似文献   

19.
Excellent luminescence properties of ZnS/CdS/ZnO and ZnO/ZnS/CdS nanocrystallites synthesized through a simple chemical method at room temperature are reported. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), UV–visible absorption and photoluminescence techniques were used to characterize the undoped ZnS, CdS and ZnO and the novel ZnS/CdS/ZnO and ZnO/ZnS/CdS nanoparticles. The optical properties of ZnS/CdS/ZnO and ZnO/ZnS/CdS nanoparticles reflect a combinational effect of the photoluminescent properties of ZnS, CdS and ZnO.  相似文献   

20.
The electronic and optical properties of a single exciton in a CdSe/CdS/CdSe/CdS quantum dot is studied by using effective mass approximation with parabolic confinement. The Coloumbic interaction between electron and hole is included by Hartree potential. A self-consistent technique is used to calculate the energy eigenvalue and wavefunction of exciton. Based on this approximation we investigate the effect of core size, shell thickness, well width on exciton binding energy, absorption spectra, and oscillator strength. The results provide the tuning possibility of electronic and optical properties of multilayer quantum dot with layer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号