首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
殷敬伟  杨森  杜鹏宇  余赟  陈阳 《物理学报》2012,61(6):64302-064302
基于单矢量传感器对码分多址水声通信进行了研究. 利用单个矢量传感器自身指向性进行方位估计最为常用的方法是平均声强器和复声强器, 但这些方法对于同频带的多用户来说, 理论极限仅能测量两个用户. 提出了有源平均声强器, 利用扩频通信中伪随机码优良的自相关和互相关特性, 可同时测得多个用户的方位, 利用估计的用户方位构建矢量组合, 调整矢量传感器的指向性, 实现各用户定向通信, 抑制多址干扰, 增加处理增益, 降低误码率. 对频带相同的扩频多用户通信进行了仿真及试验研究, 验证了有源平均声强器的有效性和实用性.  相似文献   

2.
基于单矢量有源平均声强器的码分多址水声通信   总被引:1,自引:0,他引:1       下载免费PDF全文
殷敬伟  杨森  杜鹏宇  余赟  陈阳 《物理学报》2012,61(2):064302
基于单矢量传感器对码分多址水声通信进行了研究. 利用单个矢量传感器自身指向性进行方位估计最为常用的方法是平均声强器和复声强器, 但这些方法对于同频带的多用户来说, 理论极限仅能测量两个用户. 提出了有源平均声强器, 利用扩频通信中伪随机码优良的自相关和互相关特性, 可同时测得多个用户的方位, 利用估计的用户方位构建矢量组合, 调整矢量传感器的指向性, 实现各用户定向通信, 抑制多址干扰, 增加处理增益, 降低误码率. 对频带相同的扩频多用户通信进行了仿真及试验研究, 验证了有源平均声强器的有效性和实用性.  相似文献   

3.
单矢量水听器方位估计的柱状图方法   总被引:1,自引:0,他引:1       下载免费PDF全文
单矢量水听器可以估计目标方位,矢量水听器信号处理中用到的平均声强器的处理方法能很好地抗各向同性的非相干干扰,但不能抗相干干扰.文中提出了一种新的单矢量水听器方位估计方法柱状图方位估计法,介绍了该方法的原理;对宽带信号中含强线谱相干干扰的情况进行了计算机仿真,结果表明该方法在强线谱相干干扰下能有效检测目标、估计目标方位;海试结果验证了该方法抗强线谱相干干扰的有效性.  相似文献   

4.
针对矢量水听器测向的应用要求,研究了三维水声传播问题中水平折射对声矢量场特性的影响。理论分析表明,水平折射可使质点水平位移从线性极化转变为椭圆极化,同时引起声能流方向的水平偏转。声能流方向的水平偏转导致波达方向偏离目标水平方位,对目标水平方位估计造成误差。采用虚源法仿真了倾角为2.86°的楔形波导中的三维声矢量场,并给出了空间各点处由水平折射引起的单矢量水听器目标方位估计误差。结果显示,部分区域中由水平折射引起的目标方位估计误差可达10°以上。   相似文献   

5.
根据单矢量水听器自身具有阵列流型的特点,提出了适用于对目标保持连续跟踪的空域预滤波MUSIC算法。通过调整滤波器通带中心角使其保持在目标估计方位角附近,可以消除滤波器通带中心角偏离目标真实方位角时传统预滤波MUSIC算法产生的目标方位估计误差。仿真结果表明,改进预滤波MUSIC算法可以减小甚至消除低信噪比情况下目标方位估计存在的较大误差。海试数据结果表明,阵元域MUSIC和改进预滤波MUSIC都可实现对单频脉冲信号和线性调频信号的目标方位估计,且估计结果与GPS舰位推算结果一致,但改进预滤波MUSIC算法主瓣更尖锐。对宽带航船噪声处理结果显示,改进预滤波MUSIC算法使单矢量水听器在存在目标干扰时的探测距离从2 km提升到了5 km,验证了改进预滤波MUSIC算法可实现弱目标情况下的高分辨目标方位跟踪。  相似文献   

6.
基于射线模型给出了质点水平振速、垂直振速及复声强的表达式.结合深海直达波区的声线到达结构,分析了大深度接收时深海直达波区复声强的特点,理论分析与仿真结果表明,利用声场中不同组声线的复声强可以估计声线到达接收点的掠射角.根据在2014年进行的一次深海实验中布放在3146 m深处的矢量水听器获取的实验信号,利用直达波和海面反射波的复声强估计了直达声线与海面反射声线到达接收矢量水听器处的掠射角,结果表明,估计的声线到达角与理论计算结果基本一致.  相似文献   

7.
陈羽  孟洲  马树青  包长春 《声学学报》2015,40(6):807-815
为了实现矢量水听器垂直阵列对目标的高分辨方位估计,提出了基于MUSIC子频带最优加权数据融合方法。该方法采用MUSIC算法对划分的各窄带信号进行方位估计,并在各子频带对多基元方位估计结果进行最优加权最小二乘融合处理,最后通过加权直方图统计法得到最终方位估计结果。对算法进行的仿真及海上试验数据处理结果表明:本文算法在方位估计精度、方位估计正确概率、多目标分辨以及对噪声子频带的抑制能力方面都优于单个基元MUSIC以及多基元复声强器融合算法。   相似文献   

8.
为了实现矢量水听器垂直阵列对目标的高分辨方位估计,提出了基于MUSIC子频带最优加权数据融合方法。该方法采用MUSIC算法对划分的各窄带信号进行方位估计,并在各子频带对多基元方位估计结果进行最优加权最小二乘融合处理,最后通过加权直方图统计法得到最终方位估计结果。对算法进行的仿真及海上试验数据处理结果表明:本文算法在方位估计精度、方位估计正确概率、多目标分辨以及对噪声子频带的抑制能力方面都优于单个基元MUSIC以及多基元复声强器融合算法。  相似文献   

9.
矢量水听器的每个阵元同时测量声场中声矢量和质点振速的3个分量,相对于声压水听器阵来说,矢量阵获取声场中更多的信息。利用矢量阵所获得速度场的信息可以去除目标方位估计中的 180°模糊。模拟器可以模拟实际海洋环境中目标的辐射特性和噪声特性,应用模拟器可以有效地缩短声纳的研制周期。本文提出一种矢量水听器基阵模拟器的设计方案,该方案解决了矢量阵中宽带信号的90°移相问题、时延精确控制问题和宽带噪声的谱状控制问题。  相似文献   

10.
基于单矢量差分能量检测器的扩频水声通信   总被引:1,自引:0,他引:1       下载免费PDF全文
殷敬伟  杜鹏宇  张晓  朱广平 《物理学报》2016,65(4):44302-044302
通过获得扩频处理增益, 直接序列扩频水声通信系统具有较高的稳定性, 是高质量水声通信及远程水声通信的首选通信方式. 但复杂的海洋环境使得直扩系统在解扩时受到载波相位跳变的影响, 这将导致直扩系统的扩频处理增益下降. 为此, 本文针对直扩系统提出了差分能量检测器算法, 通过比较接收端相关器输出能量完成解码, 并与有源平均声强器算法相结合, 提出单矢量差分能量检测器算法. 该算法具有很好的抗载波相位跳变和多途扩展干扰的能力, 并可对信号方位信息实时跟踪估计, 利用估计方位进行矢量组合可获得矢量处理增益, 从而保证直扩系统可以在低信噪比、时变信道条件下稳定工作. 通过仿真分析和大连海试试验, 验证了本文提出的单矢量差分能量检测器算法的有效性和稳健性.  相似文献   

11.
To aim at the problem that the horizontal directivity index of the vector hydrophone vertical array is not higher than that of a vector hydrophone,the high-resolution azimuth estimation algorithm based on the data fusion method was presented.The proposed algorithm first employs MUSIC algorithm to estimate the azimuth of each divided sub-band signal,and then the estimated azimuths of multiple hydrophones are processed by using the data fusion technique.The high-resolution estimated result is achieved finally by adopting the weighted histogram statistics method.The results of the simulation and sea trials indicated that the proposed algorithm has better azimuth estimation performance than MUSIC algorithm of a single vector hydrophone and the data fusion technique based on the acoustic energy flux method.The better performance is reflected in the aspects of the estimation precision,the probability of correct estimation,the capability to distinguish multi-objects and the inhibition of the noise sub-bands.  相似文献   

12.
浅海环境中,确定性声源的多途声信号干涉使得接收点处声强流的方向发生改变,不再与声源位置处的声强流方向一致。只测量声场的标量声强时,无法得到接收点处声强流的垂直方向性,而基于简正波矢量场建模和仿真,可获得理想条件下宽带点声源激发声场声强流的垂直方向性。本文采用单矢量水听器进行海上实验,获得了海洋环境噪声和干扰条件下舰船噪声声强流的垂直方向性。仿真和实验结果表明:远场条件下,浅海干涉现象引起接收点处声强流的方向(极角)随频率和距离变化,其时间-频率分布呈现与LOFAR谱干涉条纹相似的条纹,声强流的极角值主要分布在70?~110?范围内。  相似文献   

13.
王超  笪良龙  韩梅  孙芹东  王文龙 《声学学报》2021,46(6):1050-1058
针对单矢量水听器海上目标探测问题,利用稀疏近似最小方差(Sparse Asymptotic Minimum Variance,SAMV)算法进行目标方位估计,该算法利用单矢量水听器自身具有阵列流形的特点,将整个扫描空间离散化,目标方位分布于某一离散方向位置上,利用空间信号的稀疏性可提高目标方位估计性能。仿真结果表明,SAMV算法在各信噪比条件下方位估计噪声背景级明显优于常规波束形成(Conventional Beam Forming,CBF)算法和最小方差无失真响应(Minimum Variance Distortionless Response,MVDR)算法,当信噪比大于0dB时,该算法测向结果均方根误差小于2°,且SAMV算法具有更好的空间方位分辨能力。消声水池和海上声学浮标海上试验数据处理结果表明,SAMV算法给出了噪声背景级更低的目标方位历程图,有效验证了SAMV算法对海上目标的探测性能及其有效性。   相似文献   

14.
程彬彬  杨士莪 《应用声学》2006,25(4):234-239
矢量水听器由于能获取声场中标量(声压)和矢量(振速)信息,因此单个的矢量水听器就可实现目标方位估计。单个矢量水听器是利用信号的声压和质点振速之间相关性进行信号方位估计,但是当存在干扰,并且干扰和信号之间相关时,如果对运用能量流进行方位估计的方法不加改进,则会出现很大的误差,甚至出现错误的估计。本文提出一种存在已知噪声干扰情况下的干扰抵消方法,并针对该方法进行了仿真试验,最后运用湖试数据进行了验证。结果表明,该方法能有效地减弱相千千柑对信号的影响,实现对信号的方位估计。  相似文献   

15.
王超  王文龙  袁猛  张小川  吕勇 《应用声学》2021,40(2):316-322
单个矢量水听器直方图算法具有良好的鲁棒性和目标方位估计性能,该文对直方图算法目标探测性能进行了分析和总结,并提出了一种基于目标方位估计的水中目标自主探测与跟踪算法,该算法可实现水中目标有无自主检测。仿真和消声水池测试结果表明,直方图算法实现目标自主跟踪所要求的信噪比需大于-7 dB,此时测向误差约为8°,-3 dB方位谱宽度在20°左右。海上试验数据分析表明,直方图算法对航速8.4 kn的水面航船在距离13.8 km范围内,可实现全程目标探测和跟踪,测向误差最优可达5?,在距离2 km时-3 dB方位谱宽度可达10°左右。  相似文献   

16.
浅海环境中矢量水听器角度谱特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为探明远场舰船噪声和近场平台噪声声能流相互作用的机制对矢量水听器角度谱特性的影响,基于简正波矢量场理论,构建舰船平台噪声声场模型,获得与海上实验结果相符的声能流角度谱特性,声能流方向均随频率变化。对远场舰船噪声声能流和近场平台噪声声能流相互作用进行仿真,两者声能流强度的此消彼长使角度谱出现4种条纹,与海上实验获得的角度谱特性一致,导致目标方位估计出现误差,且不同频带上的结果不一致。说明两个声能流相互作用时,影响合成能流角度谱特性的主要因素是两者的声压级之差,为浅海中同时存在多个声源时的目标方位估计提供参考。   相似文献   

17.
Pekeris波导中简正波的复声强及其应用   总被引:4,自引:0,他引:4       下载免费PDF全文
余赟  惠俊英  赵安邦  孙国仓  滕超 《物理学报》2008,57(9):5742-5748
在Pekeris波导模型下,关注了简正波的矢量场,讨论了简正波水平复声强和垂直复声强的表述,并分析了其特征.单阶简正波在水平方向是行波,相应的水平复声强仅为有功的;在垂直方向为驻波,相应的垂直复声强仅为无功的.而多阶简正波相互干涉,因此总声场的复声强既有有功分量,也有无功分量,其中只有有功分量参与声能的输运,但无功分量是反映声场信息的重要组成部分.通过对垂直(交互)复声强无功分量和水平交互复声强有功分量的数值分析,对于甚低频率的点源声场,发现当声源深度变化时,上述声场分量的正负号呈有规变化,当接收传感器置 关键词: 目标深度分类 复声强 矢量场 Pekeris波导  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号