首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Pei Gu  Ming Dao  Yuntian Zhu 《哲学杂志》2013,93(11):1249-1262
This paper analyses slip transfer at the boundary of nanoscaled growth twins in face-centred cubic (f.c.c.) metals for strengthening mechanism. The required stress for slip transfer, i.e. inter-twin flow stress, is obtained in a simple expression in terms of stacking fault energy and/or twin boundary (TB) energy, constriction energy and activation volume. For nanotwinned Al, Cu and Ni, inter-twin flow stress versus twin thickness remarkably shows Hall–Petch relationship. The Hall–Petch slope is rationalized for various reactions of screw and non-screw dislocations at the TB. Additionally, strengthening at the boundary of nanoscaled deformation twins in f.c.c. metals is analysed by evaluating required twinning stress. At small nanograin size, the prediction of deformation twin growth stress shows inverse grain-size effect on twinning, in agreement with recent experimental finding.  相似文献   

2.
The scaling of microstructure to the nanoscale is a well-known method of enhancing the physical properties of many materials. New findings reveal a 10-fold enhancement in the hardness of nanocrystalline Ta and V nanolaminates is attributable to grain size effects, more so than the layer pair spacing. A Hall–Petch relationship of hardness with grain size appears in these body-centred-cubic nanocrystalline structures.  相似文献   

3.
Abstract

The grain refinement and mechanical properties of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing (ECAP) at a temperature of 673 K were examined. The microstructure evolution was characterised by the development of a large number of low-angle subboundaries at small strains. An increase in the true strain resulted in gradual transformation of low-angle subboundaries into high-angle grain boundaries that was assisted by the deformation micro-banding. The development of new ultra-fine grains was considered as a kind of continuous dynamic recrystallization, the kinetics of which was characterised by a sigmoid-type dependence on strain and could be expressed by a modified Johnson–Mehl–Avrami–Kolmogorov equation. ECAP led to significant strengthening of the alloy. The yield strength increased from 105 MPa in the initial state to 390 MPa after 8 ECAP passes. A modified Hall–Petch relationship was applied to analyse the contributions of grain refinement and dislocation density to the overall strengthening. In spite of significant strengthening, the electro-conductivity remained at a level of 80% IACS.  相似文献   

4.
5.
In the present investigation, the indentation study on the high-energy ball-milled nanocrystalline Al5Fe2 intermetallic compound has established the inverse Hall–Petch (IHP) behaviour. The structural characterisation of the milled powder particles by X-ray diffraction (XRD) and transmission electron microscopy has shown the evolution of nanocrystalline phase. Micro-indentation measurements have revealed the increase in hardness with decreasing grain size, reaching to a maximum of 9.0 ± 0.3 GPa up to a grain size of 32 ± 4 nm, followed by a decrease. The decrease in hardness with further refinement, an indication of grain size softening, demonstrates the IHP-like behaviour. The deviation from the Hall–Petch behaviour has been discussed using various models based on the dislocations and grain boundary-mediated processes. From the analysis, it appears that the model based on mesocopic grain boundary sliding phenomena is more appropriate to account for the observed grain size softening.  相似文献   

6.
Highly supersaturated solid solutions of nitrogen in ferrite (bcc) were produced by ball milling of various powder mixtures of α-iron and ε-Fe3N1.08. The microstructure and the crystal structure of the product phases were examined as a function of nitrogen content using X-ray powder diffraction, high-resolution electron microscopy and Mössbauer spectroscopy. It was found that the grain size decreases with increasing nitrogen content. Unexpected shifts of the reflections in the X-ray powder diffraction patterns of the supersaturated N-ferrites, depending on the hkl values of the reflections and nitrogen content, were observed. These shifts cannot be explained by tetragonal distortion of the bcc unit cell, but they are in accordance with the occurrence of a certain type of stacking faults on bcc {211} planes. This result, together with the observation of some isolated fcc crystals (by high-resolution electron microscopy) and a drop in microstrain for high nitrogen contents, demonstrates that unconventional deformation mechanisms are operative in these materials below a certain grain size, leading to a breakdown of the classical Hall–Petch relation for mechanical strengthening.  相似文献   

7.
In this study, the incipient plasticity and voids nucleation of nanocrystalline gold were investigated using a molecular dynamics simulation. The effects of mean grain size and temperature were evaluated in terms of the material's stress-strain diagram, Young's modulus, yield strength, common-neighbor analysis, slip vectors, and deformation behaviors. From the stress-strain diagram, at 300?K, the maximum stress value corresponding to a grain size of 3.2?nm was much lower and the stress curve was clearly different from those corresponding to other grain sizes. Young's modulus increased with increasing mean grain size. The inverse Hall–Petch relation was observed. The slip was the main deformation behavior at a mean grain size of 3.2?nm. Moreover, the internal stress was more pronounced with increasing temperature. At 700?K, the main deformation area range was concentrated in the lattice at the middle of the samples, resulting in an almost force–induced structural transformation phenomenon in the middle. Void damage occurred at the junction of three–grain boundaries during the tensile process. With decreasing mean grain size, the less internal differential slip was generated under the same temperature and strain conditions.  相似文献   

8.
R. Kalsar  R. Madhavan  R. K. Ray 《哲学杂志》2020,100(16):2143-2164
ABSTRACT

The evolution of deformation texture and microstructure in commercially pure Al (cp-Al) and two Al–Mg alloys (Al–4Mg and Al–6Mg) during cold rolling to a very large strain (true strain εt? ≈?3.9) was investigated. The development of deformation texture in cp-Al, after rolling, can be considered as pure metal or Copper-type, which is characterised mainly by the presence of Cu {112}<111>, Bs {110}<112> and S {123}<634> components. The deformation microstructure clearly indicates that deformation mechanism in this case remains slip dominated throughout the deformation range. In the Al–4Mg alloy, the initial slip mode of deformation is finally taken over by mechanism involving both slip and Copper-type shear bands, at higher deformation levels. In contrast, in the Al–6Mg alloy, the slip and twin mode of deformation in the initial stage is replaced by slip and Brass-type shear bands at higher deformation levels. Although a Copper-type deformation texture forms in the two Al–Mg alloys at the initial stage of deformation, there is a significant increase in the intensity of the Bs component and a noticeable decrease in the intensity of the Cu component at higher levels of deformation, particularly in the Al–6Mg alloy. This phenomenon indicates the possibility of transition of the deformation texture from Cu-type to Bs-type, which is concurrent with the addition of Mg. Using visco-plastic self-consistent modelling, the evolution of deformation texture could be simulated for all three materials.  相似文献   

9.
To extract quantitative and meaningful relationships between material microstructure and deformation twinning in magnesium, we conduct a statistical analysis on large data sets generated by electron backscattering diffraction (EBSD). The analyses show that not all grains of similar orientation and grain size form twins, and twinning does not occur exclusively in grains with high twin Schmid factors or in the relatively large grains of the sample. The number of twins per twinned grain increases with grain area, but twin thickness and the fraction of grains with at least one visible twin are independent of grain area. On the other hand, an analysis of twin pairs joined at a boundary indicates that grain boundary misorientation angle strongly influences twin nucleation and growth. These results question the use of deterministic rules for twin nucleation and Hall–Petch laws for size effects on twinning. Instead, they encourage an examination of the defect structures of grain boundaries and their role in twin nucleation and growth.  相似文献   

10.
A Hall–Petch (H–P)-type dependence is demonstrated for reciprocal activation volume measurements for nanocrystalline and conventional grain size, strengthened Ni and Cu materials, consistent with predictions derived from the dislocation pile-up model. The observed H–P dependence indicates that the shear stress for cross-slip must be involved in the full grain size regime for transmission of plastic flow at the grain boundaries of fcc metals.  相似文献   

11.
J. Y. Zhang    K. Wu  J. Sun 《哲学杂志》2013,93(9):613-637
Abstract

Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT–Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT–Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT–Ni foils as well as reported NT–Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.  相似文献   

12.
ABSTRACT

Molecular dynamics simulations were used to study the atomic mechanisms of deformation of nanocrystalline gold with 2.65–18?nm in grain size to explore the inverse Hall–Petch effect. Based on the mechanical responses, particularly the flow stress and the elastic-to-plastic transition, one can delineate three regimes: mixed (10–18?nm, dislocation activities and grain boundary sliding), inverse Hall-Petch (5–10?nm, grain boundary sliding), and super-soft (below 5?nm). As the grain size decreases, more grain boundaries present in the nanocrystalline solids, which block dislocation activities and facilitate grain boundary sliding. The transition from dislocation activities to grain boundary sliding leads to strengthening-then-softening due to grain size reduction, shown by the flow stress. It was further found that, samples with large grain exhibit pronounced yield, with the stress overshoot decrease as the grain size decreases. Samples with grain sizes smaller than 5?nm exhibit elastic-perfect plastic deformation without any stress overshoot, leading to the super-soft regime. Our simulations show that, during deformation, smaller grains rotate more and grow in size, while larger grains rotate less and shrink in size.  相似文献   

13.
Wen Wang  Ping Jiang  Xiaolei Wu 《哲学杂志》2018,98(13):1186-1203
The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the < c + a > edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the < c + a > edge dislocations can cut through the basal SFs although the interactions between the < c + a > dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.  相似文献   

14.
Abstract

Molecular dynamics simulations have been performed to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 9.0 and 24 nm. A melting–cooling method has been used to generate the initial samples: this method produces realistic samples that contain defects inside the grains such as dislocations and vacancies. The results of uniaxial tensile tests applied to these samples reveal the presence of a critical mean grain size between 16 and 20 nm, for which there is an inversion of the conventional Hall–Petch relation. The principal mechanisms of deformation present in the samples correspond to a combination of dislocations and grain boundary sliding. In addition, this analysis shows the presence of sliding planes generated by the motion of perfect edge dislocations that are absorbed by grain boundaries. It is the initial defects present inside the grains that lead to this mechanism of deformation. An analysis of the atomic configurations further shows that nucleation and propagation of cracks are localised on the grain boundaries especially on the triple grains junctions.  相似文献   

15.
ABSTRACT

The ability to experimentally synthesise ceramic materials to incorporate nanotwinned microstructures can drastically affect the underlying deformation mechanisms and mechanics through the complex interaction between stress state, crystallographic orientation, and twin orientation. In this study, molecular dynamics simulations are used to examine the transition in deformation mechanisms and mechanical responses of nanotwinned zinc-blende SiC ceramics subjected to different stress states (uniaxial compressive, uniaxial tensile, and shear deformation) by employing various twin spacings and loading/crystallographic orientations in nanotwinned structures, as compared to their single crystal counterparts. The simulation results show that different combinations of stress states and crystal/twin orientation, and twin spacing trigger different deformation mechanisms: (i) shear localised deformation and shear-induced fracture, preceded by point defect formation and dislocation slip, in the vicinity of the twin lamellae, shear band formation, and dislocation (emission) avalanche; (ii) cleavage and fracture without dislocation plasticity, weakening the nanotwinned ceramics compared to their twin-free counterpart; (iii) severe localised deformation, generating a unique zigzag microstructure between twins without any structural phase transformations or amorphisation, and (iv) atomic disordering localised in the vicinity of coherent twin boundaries, triggering dislocation nucleation and low shearability compared to twin-free systems.  相似文献   

16.
Ligang Sun  Xiaoqiao He 《哲学杂志》2015,95(31):3467-3485
Affected by twin orientation and spacing distribution, different deformation and failure mechanisms of nanotwinned (NT) Cu films are discovered. For films with the same twin spacing, transition from brittle to ductile and ductile to localized necking with the increase of the slanted angle of twin boundary (TB) from 0° to 90° is examined. Two dominant slip mechanisms: (1) slip intersecting with the TBs; (2) slip parallel to the TBs can uncover the transition mechanisms with consideration of twin orientation. To maintain both relatively high strength and good ductility, the slanted angle can be set close to the ductile to localized necking transition border. Besides, the stress–strain curves obtained in this article show that the mechanical responses on both sides of the turning point 45° are asymmetric. On the other hand, the twin spacing distributions affect the ductility of NT Cu films and have almost no contribution to strengthening. The strength of the NT Cu films mainly depends on the twin density. NT Cu films with different twin spacing have worse ductility than equal twin spacing films due to the local twin spacing asymmetry. The failures can be predicted appearing at TBs adjacent to large twin spacing regions, and the failure propagation direction can also be predicted by knowing the obtuse angle decided by stacking faults and TBs.  相似文献   

17.
C. X. Huang  G. Yang  B. Deng  S. D. Wu  S. X. Li 《哲学杂志》2013,93(31):4949-4971
An ultra-low carbon austenitic stainless steel was successfully pressed from one to eight passes by equal channel angular pressing (ECAP) at room temperature. By using X-ray diffraction, optical microscopy and transmission electron microscopy, the microstructural evolution during ECAP was investigated to reveal the formation mechanism of strain-induced nanostructures. The refinement mechanism involved the formation of shear bands and deformation twins, followed by the fragmentation of twin lamellae, as well as successive martensite transformation from parent austenitic grains with sizes ranging from microns to nanometres through the processes γ(fcc)?→?ε(hcp)?→?α′(bcc). After pressing for eight passes, two types of nanocrystalline grains were achieved: (a) nanocrystalline austenite with a mean grain size of ~31?nm and (b) strain-induced nanocrystalline α′-martensite with a size of ~74?nm. The formation mechanisms are discussed in terms of microstructural subdivision via deformation twinning and martensite transformation.  相似文献   

18.
Dislocation evolution in titanium during surface severe plastic deformation   总被引:1,自引:0,他引:1  
Surface mechanical attrition treatment (SMAT) is an innovative technique which can produce nanocrystalline (nc) layers of several tens of micrometers thickness on surfaces of metallic materials. In this work, the grade structures of commercially pure titanium (CP Ti) processed by SMAT was studied intensively, and the microstructure observations indicated that the dislocation evolution could be separated into three steps: (1) formation of dislocation tangles; (2) formation of dislocation bands; and (3) dynamic recrystallization of dislocation bands until the formation of nc Ti.  相似文献   

19.
The energetics of slip–coherent twin boundary (CTB) interactions are established under tensile deformation in face centered cubic (fcc) copper with molecular dynamics simulations, exploring the entire stereographic triangle. The CTBs serve as effective barriers in some crystal orientations more than others, consistent with experimental observations. The resulting dislocation structures upon slip–twin reactions are identified in terms of Burgers vector analysis. Visualization of the dislocation transmission, lock formation, dislocation incorporation to twin boundaries, dislocation multiplication at the matrix–twin interface and twin translation, growth, and contraction behaviors cover the most significant reactions that can physically occur providing a deeper understanding of the mechanical behavior of fcc alloys in the presence of twin boundaries. The results make a distinction between deformation and annealing twins interacting with incident dislocations and point to the considerable role both types of twins can play in strengthening of fcc metals.  相似文献   

20.
Hardness and Young's modulus were measured by nanoindentation on a series of electrodeposited nanocrystalline nickel and nickel–iron alloys. Hardness values showed a transition from regular to inverse Hall–Petch behaviour, consistent with previous studies. There was no significant influence of grain size on the Young's modulus of nanocrystalline nickel and nickel–iron alloys with grain sizes greater than 20?nm. The Young's modulus values for nanocrystalline nickel and nickel–iron alloys for grain sizes less than 20?nm were slightly reduced when compared to their conventional (randomly oriented) polycrystalline counterparts. The observed trend with decreasing grain size was found to be consistent with composite model predictions that consider the influence of intercrystalline defects. However, there was some notable variability of the measured values when compared to the model predictions. Three theoretical relationships were used to characterise the anisotropic elastic behaviour of these materials. As a result, texture was also considered to have an influence on the measured Young's modulus and used to explain some of the observed variability for the entire grain size range (9.8–81?nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号