首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
大气压下自由燃烧弧的温度场和速度场的数值模拟   总被引:2,自引:0,他引:2  
徐翔  宫野  刘金远  郑殊 《计算物理》2004,21(1):81-85
采用标准SIMPLE算法,并作了一些修正,给出了具体的计算步骤和流程图,将其应用于磁流体动力学(MHD)方程进行数值求解.得到了轴对称情况下,自由燃烧弧的温度场和速度场的分布,并和实验结果进行了比较。分析了不同辐射模型对温度场的影响,发现辐射导致电弧温度降低,但不同的辐射模型对于电弧的温度影响不大。  相似文献   

2.
在二元合金相场模型的研究基础上,建立了耦合溶质场、温度场和流场的相场模型,采用Simple算法求解质量和动量守恒方程,用交替隐式有限差分法求解温度控制方程,模拟了流场作用下二元合金等温和非等温凝固过程中枝晶的生长过程,研究了流场对枝晶生长形貌、溶质场和温度场分布情况的影响,将流场作用下二元合金等温和非等温凝固枝晶生长过程进行比较,分析了由于凝固潜热的释放对流场作用下凝固枝晶生长的影响. 关键词: 相场法 对流 非等温凝固 枝晶生长  相似文献   

3.
本文建立了一个在常重力及微重力情况下绕汽柱热毛细对流的数学模型,并采用有限差分法来积分非稳态动量方程和能量方程,得到了不同参数下热毛细对流的数值解.通过数值模拟,得到了不同参数下热毛细对流的速度矢量场,了解了有关无量纲参数对热毛细对流的影响规律.得出结论:热毛细对流不仅在微重力条件下存在,即使在重力场中,在特定情况下也是不能忽略的。  相似文献   

4.
不同磁致纵向涡形式对空气对流换热的影响   总被引:3,自引:0,他引:3  
为揭示不同磁致纵向涡对通道内空气对流换热的影响规律,分别就两极和四极钕铁硼永磁体作用下的矩形通道内的对流换热进行了数值模拟。模拟以通道入口段的流动和换热为对象,得到了不同Re和不同壁温下的流场和温度场, 对流换热的Nu和阻力系数,以及场协同数Fc。结果表明,不同纵向涡形式下的流场和温度场的协同性不同,具有八纵向涡形式的对流换热的协同性优于四纵向涡形式,强化效果也优于四纵向涡。  相似文献   

5.
表面防热材料热解与烧蚀效应研究在高超声速飞行器总体设计中具有重要应用价值。以热解烧蚀效应对飞行器目标特性及通信性能影响的预测评估为背景, 从化学非平衡气体动力学方程及固体热传导方程出发, 建立了气-固交界面上热解烧蚀壁面边界条件的一般形式及热物理化学模型, 发展了高超声速再入体绕流流场与表面材料内部温度场耦合求解的数值模拟方法, 并对计算模型和数值方法的可靠性进行了验证分析。在此基础上针对复杂外形再入体及表面硅基防热材料, 开展了典型再入条件下再入体绕流及尾流流场的数值模拟, 重点分析了表面材料热解烧蚀效应对流场等离子体分布的影响。研究表明: 在表面材料中不含碱金属杂质的情况下, 热解与烧蚀效应对流场中等离子体分布影响较小, 而在含有微量碱金属杂质的情况下, 热解与烧蚀效应对流场中等离子体分布及化学组分分布具有很大影响, 由此对再入目标特性与电磁通信性能带来的影响不容忽视。   相似文献   

6.
本文采用磁流体动力学(MHD)模型对直流等离子体自由燃烧电弧和电弧炉内部的流动与传热进行了数值模拟研究。通过对基于磁矢量势描述的电磁场方程组和流体力学方程组的耦合迭代计算,求解得到了流体的温度场和速度场等,计算结果清晰地反映出等离子体电弧的高温阴极射流现象,并与同行的实验和数值结果进行了对比。本模拟方法和结果对于电弧炉的工业应用和优化设计有重要的指导意义。  相似文献   

7.
本文基于(火积)耗散极值原理得到了对流传热的优化场协同方程,用Fluent数值模拟求解层流状态下的管外流动换热的优化流场。得到了管外流动的优化速度场为多纵向涡结构形态,对优化流场进行分析,发现优化流场的综合换热效果远远高于原型流场。通过在管外添加扰流片的方法,来产生带有纵向涡的流场,达到优化管外流动传热的目的。数值模拟结果表明,添加扰流片在一定程度上可以强化管外对流换热。  相似文献   

8.
大速差射流预燃室煤粉燃烧的颗粒轨道法数值模拟   总被引:1,自引:0,他引:1  
本文用颗粒轨道模型对流场复杂的二维大速差射流燃烧室内煤粉燃烧进行了数值模拟,给出了包括热态气相流场、温度场和浓度场等在内的各种气相场分布,同时也给出颗粒轨道及其速度、温度、质量等的变化。模拟结果再次揭示了该燃烧室内流动和燃烧的主要物理特征,并着重指出煤粉颗粒在燃烧室内的行为对火焰稳定的重要影响。  相似文献   

9.
为了研究弹头激波诱导燃烧,基于有限体积的考虑化学反应的Navier-Stokes(N-S)方程,对预混氢气-空气化学恰当比时的燃烧流场进行了数值模拟.时间项基于2阶隐式LU-SGS格式,对流项基于Steger-Warming进行离散,化学反应源项采用对角化隐式处理.首先,研究了网格对燃烧爆轰流场结构的影响,并利用Lehr实验结果验证了计算方法的可靠性;其次,研究了弹头的飞行Mach数(Ma=4.18,5.11,6.46)、弹头直径(D=5,10,15 mm)对燃烧流场稳定性的影响.研究表明:计算网格对氢气-空气爆轰流场结构影响很大;弹头直径一定时,氢气-空气燃烧流场稳定性随着飞行Mach数的增大而增强;弹头飞行Mach数一定时,氢气-空气燃烧流场稳定性随着弹头直径减小而增强.   相似文献   

10.
以航天领域中研究再入飞行器热防护系统的感应耦合等离子体(inductively coupled plasma, ICP)风洞为研究对象,通过流场-电磁场-化学场-热力场-湍流场多场耦合求解研究ICP风洞流场与电磁场的分布特性及其相互作用机理.数值模拟中,基于热化学非平衡等离子体磁流体动力学模型准确模拟了空气ICP的高频放电、焦耳加热、能量转化、粒子内能交换等过程,通过多物理场耦合计算模拟得到了100 kW级ICP风洞内空气等离子体的电子温度、粒子数密度、洛伦兹力、焦耳加热率、速度、压强、电场强度的分布规律.研究结果表明:在感应线圈区靠近等离子体炬壁附近,等离子体流动处于热力学非平衡状态;洛伦兹力对感应线圈区空气粒子的动量传递和电子热运动起着控制作用.  相似文献   

11.
李和平  陈熙 《中国物理》2002,11(1):44-49
By experimental observation we show that the plasma flow and heat transfer within a direct current (DC) nontransferred arc plasma torch always show appreciable three-dimensional (3D) peculiarity even when the geometrical construction of the torch and working gas admission and external electrical collection conditions are completely axisymmetrical.Previous two-dimensional (2D) modelling studies cannot predict the 3D peculiarity of the plasma torch.We have successfully performed 3D modelling,and in this paper we present the modelling results for the plasma flow and heat transfer characteristics in a laminar DC non-transferred are argon plasma torch.The predicted arc-root location on the surface of the torch anode and arc voltage compare favourably with the corresponding experimental results.  相似文献   

12.
An arc channel at atmospheric pressure tends to shrink generally. In this paper, a non-transferred DC arc plasma device with multiple cathode is introduced to produce a large area arc plasma at atmospheric pressure. This device is comprised of a 42-mm diameter tubular chamber, multiple cathode which is radially inserted into the chamber, and a tungsten anode with a nozzle in its center. In argon/helium atmosphere, a large area and circumferential homogenous diffuse arc plasma, which fills the entire cross section surrounded by the cathode tips, is observed. Results show that the uniformity and stability of diffuse arc plasma are strongly related to the plasma forming gas. Based on these experimental results, an explanation to the arc diffusion is suggested. Moreover, the electron excitation temperature and electron density measured in diffuse helium plasma are much lower than those of constricted arc column, which indicates the diffuse helium plasma probably deviates from the local thermodynamic equilibrium state. Unlike the common non-transferred arc plasma devices, this device can provide a condition for axial-fed feedstock particles. The plasma device is attempted to spheroidize alumina powders by using the central axis to send the powder. Results show that the powder produced is usually a typical hollow sphere.  相似文献   

13.
通过电弧模型与熔池模型耦合数值模拟,研究了氩弧和氦弧特性及其对SUS304不锈钢钨极惰性气体保护(TIG)焊熔池形貌的影响.通过比较氩弧和氦弧的温度轮廓线以及阳极表面电流密度和热流密度分布发现,氦弧的径向距离比氩弧收缩明显,导致更多热量传递给阳极.模拟了氩弧和氦弧下浮力、电磁力、表面张力和气体剪切力分别对熔池形貌的影响.结果表明:不论是在氩弧还是在氦弧下熔池中表面张力是影响熔池形貌的最主要驱动力.在氩弧下,影响熔池形貌的另一个重要的驱动力是气体剪切力,而氦弧下则是电磁力.由于电磁力引起的内对流运动增加了熔深,从而导致相同氧含量时氦弧下的熔深和焊缝深宽比要高于氩弧下的熔深和焊缝深宽比.随着氧含量的增加,氩弧和氦弧下的焊缝深宽比均先增加而后保持不变.焊缝深宽比的模拟结果与实验结果符合较好. 关键词: 氩弧 氦弧 电弧特性 熔池形貌  相似文献   

14.
While Part I deals with cylindrical arcs, Part II studies the influence of transverse magnetic fields on the arc column for ambient pressures of 0.1-5.0 MPa. If exposed to a magnetic induction of several millitesla, the column of an arc is deflected by the Lorentz forces. In this paper, heat transfer and fluid flow with coupled electromagnetic forces are modeled for the magnetically deflected arc. To verify the predictions, the three-dimensional temperature distributions of the arc column are determined by line and continuum radiation measurements using tomographic methods. These temperature maps are compared with the results of the numerical simulations. To gain insight into the physical professes of the discharge and to make the arc properties available which are not readily measured, a self-consistent numerical model of the arc column is applied to the time-dependent and three-dimensional case. The temperature, velocity, pressure, and current densities are predicted by solving the conservation equations for mass, momentum, and energy, and Ohm's and Biot-Savart's law using material functions of the plasma. A control volume approach facilitates a numerically conservative scheme for solving the coupled partial differential equations. The predictions are in fair agreement with experimental results. A time-dependent fully implicit simulation of the arc was used to investigate the arc instabilities for large magnetic inductions  相似文献   

15.
A straight, steady-state cross-flow arc is burning in an N2 wind tunnel. The arc is held in position by the balance of the Lorentz forces produced by an external magnetic field perpendicular to the arc axis and by the viscous forces of the gas flow acting on the arc column. The temperature field in the discharge is determined spectroscopically using the radiation of N I lines. Because of the lack of rotational symmetry an inversion method developed by Maldonado was used to determine the local emission coefficient from the measured integrated spectral intensity distributions across the arc in various directions. For known local temperature the mass flow field inside the arc may be evaluated from the convective term of the energy equation and the continuity equation. This is done by expanding the terms of these two equations around the point of the temperature maximum into Fourier-Taylor series and determining coefficients of the same order and power. The solution of the resulting set of algebraic equations yields the unknown coefficients of the mass flow. The flow field obtained by these calculations shows a relatively strong counterflow through the arc core. In the region for which the series expansion holds a partial structure pertaining to a closed double vortex can be recognized. The terms of the momentum equation are calculated on the basis of these results. In order to obtain a better understanding of the importance attributed to the individual local forces acting on the plasma, a simple model was devised which separates the momentum equation into gradient and curl terms. The discussion shows that the gradient part of the Lorentz force causes mainly the pressure gradient, while the much smaller rotational part of thej×B forces is responsible for propelling the mass flow. The momentum transport inside the arc as well as in its neighbourhood is due to the viscous forces and to the pressure gradient. By contrast, at larger distances from the arc it is essentially the inertial force that determines the momentum transport. It is shown that viscosity as a damping mechanism is necessary for the existence of stationary flow fields as investigated in this work.  相似文献   

16.
An argon arc, burning between two horizontal, plane-parallel, insulating plates, is bent circularily by an external and its own magnetic field. Except for the small electrode zone, one gets a stationary radially free full circle arc for experimental investigations of magnetohydrodynamic and thermodynamic effects under well defined conditions. The local temperature distributions in the arc cross-section are detected spectroscopically as functions of the arc current and the arc radius or curvature, respectively. By means of the basic equations of conservation of energy, mass, and charge and the known transport properties of argon at atmospheric pressure, the mass flow field in the arc is evaluated. In the arc core it follows the direction of the Lorentz force radially outward counter-balancing the tendency of the curved arc to move inwards thermodynamically. Due to the symmetry to the centre-plane of the arc chamber and the vanishing net flow for the whole system, the gas flow has to stream back in the cold outer arc zones, thereby forming a double whirl. By reasons of the experimental arrangement even a quadruple whirl occurs. Additionally the evaluation yields the specific radiationu(T) of argon being compared with results in the recent literature.  相似文献   

17.
In this letter, a multi‐arc generator with three high‐voltage electrodes and a common grounded one was developed for the purpose of obtaining large area and steady arc plasma at atmospheric pressure. Three typical discharge states were found in the multi‐arc generator: independent movement of three arc columns, confluence of two arc columns, and confluence of three arc columns. The three discharge states cyclically occur on the evolution of the arc discharge and their duration is influenced by the power dissipation and plasma working gas flow rate. With an increase of discharge power and a decrease of the gas flow rate, the duration of multiple arc confluence increases, which contributes to the suppression of the fluctuation amplitude of each arc. Frequency domain analysis of the arc voltage envelope shows that the frequency of arc fluctuation increases in the multi‐arc mode in the multi‐arc generator compared to that in the single arc mode.  相似文献   

18.
An arc plasma can present various forms under the influence of an external magnetic field. In this study, a magnetically rotating arc plasma generator has been developed to produce three arc modes, namely rigid arc, distorted arc, and diffuse arc, which are obtained by controlling the gas flow rate. The evolution of these arc modes are experimentally studied and discussed. Results show that, as the gas flow rate increases, the arc mode is first transformed from the rigid to the distorted mode, and then to the diffuse mode. Comparisons show that the location of the arc attachment is a key factor in determining the rigid and distorted modes. The diffuse arc is observed under larger gas flow rates, but the completely diffuse arc can exist only within a narrow range of gas flow rates. Compared to the distorted arc, the diffuse arc has not only better stability but also a wider high‐temperature plasma zone, which indicates that the diffuse mode may be more useful in industry.  相似文献   

19.
对吸气式高超声速飞行器而言,物面热流和摩阻的准确预测对飞行器设计及安全十分关键.介绍采用CFD准确预测气动力和气动热的方法,包括流动的控制方程、湍流模型及湍流的先进壁面函数边界条件,介绍流动的数值求解方法.对典型超声速层流和湍流流动的摩擦阻力和热流进行详细的验证与确认,考察CFD工具在使用先进壁面函数边界条件后,湍流计算的法向网格无关性能力.对设计的一种吸气式高超声速飞行器的气动力和气动热进行数值模拟,为飞行器的气动设计及热防护提供了可靠的数据.  相似文献   

20.
Experimental investigation of an electric arc stabilized by a water vortex was carried out in a DC arc plasma torch for the power range 90-200 kW. Volt-ampere characteristics of the arc as well as the power balance were determined separately for the part of the arc column stabilized by water and for the remaining part between the nozzle exit and the external anode. The temperature of arc plasma close to the nozzle exit was determined by emission spectroscopy. Negatively biased electric probes in the ion collecting regime were used for determination of the plasma flow velocity. The measured temperatures up to 27000 K, and velocities up to 7 km/s are higher than the values commonly reported for plasma torches with DC arcs stabilized by a gas flow. Mass and energy balances within the arc chamber were determined from the experimental results. The radial transport of the energy by radiation was identified as a decisive process controlling the arc and plasma properties. The balance of radial energy transport was studied. The ratio of energy spent for evaporation of the water to the energy absorbed in the evaporated mass is very low in the water stabilized arc. This is the principal cause of high plasma temperatures and velocities found by the measurements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号