首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The thermal expansion coefficients of CuGaSe2 are measured in the temperature range from 300 to 670 K by an X-ray technique and are found to be αa = 13.1 × 10?6K?1 and αc = 5.2 × 10?6K?1 for the lattice parameters a and c, respectively. Some general trends in the temperature dependence of the tetragonal distortion of the I-III-VI2 and II-IV-V2 compounds are considered.  相似文献   

2.
This paper reports on the results of an investigation into the effect of irradiation of the Bardeen-Cooper-Schriefer superconductor MgB2 by electrons with a mean energy ē ~ 10 MeV at low doses (0 ≤ Φt ≤ ~5 × 1016 cm?2) on the lattice parameters, the intensity and width of diffraction lines, the superconducting transition temperature T c , and the temperature dependence of the resistivity ρ(T) in the normal state. The results of structural investigations have revealed regularities in the defect formation in the magnesium and boron sublattices of the MgB2 compound as a function of the electron fluence. At the initial stage, irradiation leads to the formation of vacancies, originally in the magnesium sublattice and then in the boron sublattice. For fluences Φt ≥ ~1 × 1016 cm?2, vacancies are formed in both sublattices. The evolution of the electrical and physical properties [T c , ρ273 K, residual resistivity ratio RRR = ρ273 K50 K, parameters of the dependence ρ(T)] under electron irradiation is in agreement with the regularities revealed in the formation of radiation-induced defects in the crystal lattice of the MgB2 compound.  相似文献   

3.
We have performed nuclear magnetic resonance (NMR) measurements on an underdoped single-crystal Ba0.77K0.23Fe2As2 with T c?=?16.5 K. Below T N?= 46 K, an internal magnetic field splits the NMR peaks of H?∥?c and shifts those of H?∥?a to higher frequencies. The nuclear spin-lattice relaxation rate 1/T 1 measured at the central peak with H?∥?a shows a distinct decrease below T c(μ 0 H?=?12 T)?= 16 K. Our results clearly show that antiferromagnetic order and superconductivity coexist at a microscopical length scale.  相似文献   

4.
Using a tunable diode-laser spectrometer, we have measured self-broadening coefficients for a few transitions in the ν7 fundamental band of C2H4 at 298 and 174 K. The studied transitions J, Ka, KcJ, Ka, Kc with 3?J?17, 1?Ka?4, and 1?Kc?14 are located in the spectral range 919-982 cm−1. The collisional widths are measured by fitting each spectral line with Voigt, Rautian, and speed-dependent Rautian profiles. The latter model provides larger broadening coefficients than the Rautian profile and still larger coefficients than the Voigt profile. An approximate semiclassical calculation performed by considering only electrostatic interactions leads to reasonable agreement with the experimental data. By comparing the results obtained at room and low temperatures, the temperature dependence of the self-broadening has been determined both experimentally and theoretically.  相似文献   

5.
The temperature and pressure derivatives of the elastic constants of orthorhombic betaine borate, (CH3)3NCH2COO·H3BO3, have been determined by measuring temperature and stress induced shifts of resonance frequencies of thick plates at ca. 15 MHz in the range between 140 and 300 K and 0 and 3 kbar. The elastic ‘shear’ resistance c44 exhibits a value as low as 0.0492×1010Nm-2at 293 K. With decreasing temperature c44 approaches zero at ca. 142.5 K, indicating an acoustic soft mode behaviour connected with a ferroelastic phase transition. The softening of c44 is described in a good approximation by c44(T)p=0 =alogT/T0 with a=0.0663×1010Nm-2 and T0 = 139.5 K. Further, c44 decreases with increasing pressure according to the linear relation c44(p)T=293 K = 0.0492?0.184×10-4p (p in bar, c44 in 1010 Nm-2). All other elastic constants show a quite normal temperature and pressure dependence. At 293 K the transition is induced by a pressure of 2.65 kbar. The transition temperature Tc depends linearly on pressure according to Tc = 142.5+0.0568 p (pinbar, TcinK). Passing through the transition no discontinuous change of the lattice constants is observed. The three principal coefficients of thermal expansion and the pressure derivatives of the dielectric constants exhibit discontinuities at the transition. The transition is of strongly second order.  相似文献   

6.
The thermal conductivity of the ferromagnetic insulator K2CuCl4 · 2H2O has been measured near its Curie temperature Tc. The measurements were made as a function of temperature in constant external magnetic field and as a function of field along isotherms. The results indicate a relaxation rate for magnetic critical scattering of phonons varies as H?1/2.  相似文献   

7.
(Dimethyldiphenylphosphonium)+(7,7,8,8-tetracyanoquinodimethanide)?2 is monoclinic, space group Cc, with a = 32.01(2), b = 6.56(1), c = 15.72(2)A?, β = 107.4(8)°. The TCNQ's stack plane-to-plane in columns parallel to b with (i) a mean interplanar spacing of 3.28 Å along the conducting chains and (ii) an exocyclic bond to quinonoid ring overlap of adjacent molecules. The conductivity along b, the needle axis, varies as σ = σ0exp (?EakT) where σ300 K = 0.05 S cm?1 and Ea = 0.20 eV (Diethyldiphenylphosphonium)+(7,7,8,8-tetracyanoquinodimethanide)?2 is similarly monoclinic, space group Cc, with a = 31.48(2), b = 6.51(1), c = 15.48(2) A?, β = 104.2(8)°. The conductivity at 300 K and activation energy, both determined along b, are 1–10 S cm?1 and 0.05 eV respectively. There is evidence of a lattice distortion in the dimethyl analogue only.  相似文献   

8.
The anionic conductivity of HoF3 single crystals with a β-YF3 structure (orthorhombic crystal system, space group Pnma) is investigated over a wide range of temperatures (323–1073 K). The unit cell parameters of HoF3 crystals are as follows: a=0.6384±0.0009 nm, b=0.6844±0.0009 nm, and c=0.4356±0.0005 nm. It is revealed that the conductivity anisotropy of the HoF3 crystals is insignificant over the entire temperature range covered. The crossover from one mechanism of ion transfer to another mechanism is observed near the critical temperature Tc≈620 K. The activation enthalpy of electrical conduction is found to be ΔH1=0.744 eV at T<Tc and ΔH2=0.43 eV at T>Tc. The fluorine vacancies are the most probable charge carriers in HoF3 crystals. The fluorine ionic conductivities at temperatures of 323, 500, and 1073 K are equal to 5×10?10, 5×10?6, and 2×10?3 S cm?1, respectively.  相似文献   

9.
Raman scattering measurements were carried out on 1T-TiSe2 above and below the phase transition temperature. Below c many new lines appear, which are the Γ-point phonon modes folded from the original zone boundary points L, M and A due to the formation of the 2a0 × 2a0 × 2c0 superlattice. Among them the strong A1g line at 119 cm?1 and the Eg line at 78 cm?1 at 11 K show softening, as the temperature approaches to Tc, but the modes become overdamped before the energies go to zero.  相似文献   

10.
The unit cell parameters a and c of nonirradiated [N(C2H5)4]2ZnBr4 crystals in the temperature region 90–300 K and of samples irradiated with γ rays to doses of 106 and 5 × 106 R in the 270-to 300-K interval were measured using x-ray diffraction. The data obtained were used to derive the thermal expansion coefficients αa and αc. It is shown that the parameter a increases and the parameter c decreases with increasing temperature. In the vicinity of the phase transition (PT) at T = 285 K, the temperature dependences of a(T) and c(T) reveal anomalies in the form of jumps and the αa(T) and αc(T) curves have a maximum and a minimum, respectively. The heat capacity of nonirradiated and irradiated [N(C2H5)4]2ZnBr4 samples was measured by adiabatic calorimetry. A maximum was found in the C p(T) curve at T = 285 K. Both x-ray diffraction and heat capacity measurements showed that the PT temperature decreased after γ irradiation.  相似文献   

11.
In the isostructural cyanobridged chain compounds N(CH3)4MnIIMIII(CN)6 · 8H2O high spin Mn(II) ions couple antiferromagnetically to low spin Mn(III) of Fe(III) ions. The MnII–MnIII compound orders ferrimagnetically below TN = 28.5 ± 1 K. The tetragonal a and b axes are easy ones for the magnetic moments. In the MnII–FeIII compound antiferromagnetic order occurs below TN = 9.3 K, with spins aligned along the tetragonal c axis. The compound undergoes a meta-magnetic transition from the antiferromagnetic to a ferrimagnetic phase. This occurs at 2 K for a field Hcrit ≈ 1.2 T. The temperature dependence of Hcrit, which vanishes at TN, is followed. The tricritical temperature T1 is ~ 5 K.  相似文献   

12.
Measurements of the electrical resistivity of 1T-TaS2 to 0.03 K show that the increase in resistivity below ~ 50 K is extrinsic.Below 2 K the resistivity is described by ? = ?0 exp T0/T)13. Because of this fractional power law behavior, we conclude that the increase is due to Anderson localization by random impurity and/or defect potentials. Other difficulties in understanding the properties of 1T-TaS2 are also pointed out.  相似文献   

13.
Damage region structure and property changes of YIG irradiated atD=1018?7.8×1019 n/cm2 were studied. Damage regions at 300 K were found to consist of 1) a core of Fe3+ paramagnetic phase (PP) withgΔ=0.8 mm/s; 2) a shell of Fe3+ intermediate magnetic phase with heavily distorted bond geometry and <H eff>≤300 kOe; 3) Fe3+ (a, d) surrounded by oxygen vacancies and interstitials. The dose dependence of PP concentration is given byC PP=1-exp(?βD), yielding PP core radiusr PP=12,5 Å. Magnetic ordering in PP was found to arise atT tr=90 K. NGR probabilityf′ under irradiation was found to decrease linearly according to Δf′/f′=?C PP(D). Net magnetization change was found, using the Gilleo model, to obey an analogous relationship ΔM(T)/M(T)=?C PP(D).T c dose dependence is given by ΔT c/T c=?0.5×C PP(D) and can be related to lattice parameter change to yield Δa 0/a 0=(1.42±0.04)×10?4×C PP(D). External field experiments revealed a complex dependence ofK 1 on PP concentration, elastic stress field magnitude and a with a minimum atD=1019 n/cm2.  相似文献   

14.
Heat capacities of [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] were measured between 135 and 375 K. A heat capacity anomaly due to the spin-transition from low-spin 1A1 to high-spin π2 electronic ground state was found at 176·29 K for the SCN-compound and at 231·26 K for the SeCN-compound, respectively. Enthalpy and entropy of transition were determined to be ΔH = 8·60 ± 0·14 kJ mol?1 and ΔS = 48·78 ± 0·71 J K?1 mol?1 for the SCN-compound and ΔH = 11·60 ± 0·44 kJ mol?1 and ΔS = 51·22 ± 2·33 J K?1 mol?1 for the SeCN-compound. To account for much larger value of ΔS compared with the magnetic contribution, we suggest that there is significant coupling between electronic state and phonon system. We also present a phenomenological theory based on heterophase fluctuation. Gross aspects of magnetic, spectroscopic, and thermal behaviors were satisfactorily accounted for by this model. To examine closely the transition process, infrared spectra were recorded as a function of temperature in the range 4000 ? 30 cm?1. The spectra revealed clearly the coexistence of the 1A1, and the 5T2 ground states around Tc.  相似文献   

15.
The chemical composition of Cu y Cr2Se4?z Br x spinels depends strongly on the preparation parameters. Spinels with 0.8?y?1.2, 0.5?x?2, and 0?z?x?0.2 have been prepared. Whereas the lattice constanta o of these spinels differs only by less than approximately 0.6%, their Curie temperatureT c depends sensitively on the spinel composition. For Cu1.1Cr2Se3.4Bro.46,a o=1.0410 nm andT c=310 K were found to compared witha 0=1.0447 nm andT c=84 K of CuCr2Se2Br2.  相似文献   

16.
The Hall coefficients, RH, for A15 structure single crystal V3Si and polycrystal V25.25 at.% Si and Nb 26 at.% Sn have been measured as functions of temperature. The data between the superconducting transition temperature, Tc, and 80 K for the Nb-Sn show a small dip centred arounf 30 K which accompanies a cubic-to-tetragonal lattice distortion commencing at about 45 K. RH for the VSi samples, which are believed to be non-transforming, is temperature independent in the range 17–40 K and equal to 2.0 ± 0.2×10?10m3C?1. These result are discussed in relation to the effect of the tetragonal distortion on the band structures of these compounds.  相似文献   

17.
The parallel magnetic susceptibility χ of a uniaxial ferromagnet ErCl3·6H2O has been measured between 0.3 and 4.2K and specially near Tc = 0.353 K. The predominant contribution to the Curie-Weiss temperature is due to the dipolar interactions. χ is proportional to ? with ? =TTc?1 in the range 10?3 < ? < 5 × 10?2. The γ value, γ = 1.01 ±0.03 is consistent with the theoretical prediction for a uniaxial dipolar ferromagnet.  相似文献   

18.
Epitaxial c-oriented Bi2Te3 films 1.2 μm in thickness are grown by the hot wall method for a low supersaturation of the vapor phase over the surface of mica substrates. The hexagonal unit cell parameters a = 4.386 Å and c = 30.452 Å of the grown films almost coincide with the corresponding parameters of stoichiometric bulk Bi2Te3 crystals. At T = 100 K, the Hall concentration of electrons in the films is on the order of 8 × 1018 cm?3, while the highest values of the thermoelectric coefficient (α ≈ 280 μV K?1) are observed at temperatures on the order of 260 K. Under impurity conduction conditions, conductivity σ of the films increases upon cooling in inverse proportion to the squared temperature. In the temperature range 100–200 K, thermoelectric power parameter α2σ of Bi2Te3 films has values of 80–90 μW cm?1 K?2.  相似文献   

19.
The thermal expansion of the a and c axes of lT-TaS2 and of the a axis of 2H-NbSe2 have been measured between 4 K and 360 K. Discontinuities in the lattice parameters of TaS2 were observed at the known charge density wave phase transitions near 200 K and 352 K, and a new transition was found near 283 K. These results are used to estimate the entropy changes occurring at the phase transitions. At the charge density wave onset temperature in NbSe2 we find an upper limit to any discontinuity in the a axis of 2 × 10-7 and to any discontinuity in the expansion coefficient of 3 × 10-7 K-1.  相似文献   

20.
The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong maximum of negative magnetoresistance of ≈27% (for μ0H = 4 T) was observed at T ≈360 K. While the magnetoresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at 150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is fitted well by the relation ρ = ρ0 + ρ 1(H)T2.3, where ρ0 = 1.1×10?4 Ω cm, ρ1(H = 0) = 1.8×10?9 Ω cm/K2.3, and ρ10H = 4 T)/ρ1(H = 0) ≈0.96. The temperature dependence of a parameter γ characterizing the extent to which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic field (μ 0H = 5 T) was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号