首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Anil Kumar  E S R Gopal 《Pramana》1979,12(5):511-522
The electrical resistance of the binary liquid system cyclohexane + acetic anhydride is measured, in the critical region, both in the pure mixture and when the mixture is doped with small amounts (≈ 100 ppm) of H2O/D2O impurities.T c was approached to aboutt=3×10−6 wheret=(TT c )/T c . The critical exponentb ≈ 0.35 in the fit of the resistance data to the equationdR/dTt −b does not seem to be affected appreciably by the impurities. There is a sign reversal ofdR/dt in the non-critical region. Binary liquid systems seem to violate the universality of the critical resistivity.  相似文献   

2.
We report on study of the vortex liquid in Pb-doped Bi-2223 single crystal using the in-plane resistivity measurements as a function of temperature and magnetic field up to 6 T applied perpendicular to CuO planes. Below T c at the upper part of superconducting transition we found Arrhenius-like resistivity behavior. With further temperature decrease close to onset of dissipation resistivity shows power law dependence on temperature signaling approaching vortex-glass transition. The critical exponents ν(z − 1) = 4.6 ± 0.5 are found to be field independent within experimental errors. We also present magnetic phase diagram defining region of nonzero critical current for Pb-doped Bi-2223 single crystal.  相似文献   

3.
A magnetic phase transition in carbon-doped (0.1 and 0.7 at. %) Fe70Ni30 Invar alloys was investigated by the method of depolarization of a transmitted neutron beam and by small-angle scattering of polarized neutrons. It is shown that for both alloys, two characteristic length scales of magnetic correlations coexist above T c. Small-angle scattering by critical correlations with radius R c is described well by the Ornstein-Zernike (OZ) expression. The longer-scale (second) correlations, whose size can be estimated from depolarization data, are not described by the OZ expression, and hypothetically can be modeled by a squared OZ expression, which in coordinate space corresponds to the relation 〈M(r)M(0)〉∝exp(−r/R d), where R d is the correlation length of the second scale. The temperature dependence of the correlation radius R c was obtained: R c ∝ ((TT c)/Tc)ν , where ν≈2/3 is the critical exponent for ferromagnets, over a wide temperature range up to T c exp , at which the correlation radius becomes constant and equals its maximum value R c(T c)=R c max . The maximum correlation radius established (R c max =140 Å and 230 Å for the first and second alloys, respectively) characterizes the length-scale of the fluctuation for which the appearance of critical correlations first results in the formation of a ferromagnetic phase, and the phenomenon itself exhibits a “disruption” of the second-order phase transition at T=T c exp , as a result of which a first-order transition arises. Temperature hysteresis was also detected in the measured polarization of the transmitted beam and intensity of small-angle neutron scattering in the alloy above T c, confirming the character of this magnetic transition as a first-order transition close to a second-order transition. Zh. éksp. Teor. Fiz. 112, 2134–2155 (December 1997)  相似文献   

4.
Titanium-rich transition metal alloys are metastable in their quenched boc β phase. The instability is relieved by low temperature structural transformations. We have investigated this in a series of Ti-Nb alloys, through the measurements of electrical resistivity (ρ), superconducting transition temperature and upper critical field. Supporting structural evidence has been obtained from transmission electron microscopy (tem) and x-ray studies. It is shown that both ρ and dρ/dT can be used as useful indices of this instability. The enhanced value of resistivity on account of the instability results in the enhancement of upper critical field as shown from dH c2/dT measurements.  相似文献   

5.
A simple assumption of the emergence in gas of small atomic clusters consisting of c particles each leads to a phase separation (first-order transition). It reveals itself by the emergence of a “forbidden” density range starting at a certain temperature. Defining this latter value as the critical temperature predicts the existence of an interval with the anomalous heat capacity behavior c p ∝ ΔT −1/c . The value c = 13 suggested in the literature yields the heat capacity exponent α = 0.077.  相似文献   

6.
In cuprates, in a view where pairing correlations set in at the pseudogap energy scale T* and acquire global coherence at a lower temperature Tc, the regionT c⪯ T ⪯ T* is a vast fluctuation regime.T c andT* vary differently with doping and the question remains about the doping trends of the relevant magnetic field scales: the field Hc2 bounding the superconducting response and the pseudogap closing field Hpg. In-plane thermal (Nernst) and our interlayer (tunneling) transport experiments in Bi2Sr2CaCu2O8+y report hugely different limiting magnetic fields. Here, based on pairing (and the uncertainty principle) combined with the definitions of the Zeeman energy and the magnetic length, we show that both fields convert to the same pseudogap scaleT* upon transformation as orbital and Zeeman critical fields, respectively. The region of superconducting coherence is confined to the ‘dome’ that coincides with the usual unique upper critical field Hc2 on the strongly overdoped side. We argue that the distinctly different orbital and the Zeeman limiting fields can co-exist owing to charge and spin degrees of freedom separated to different parts of the strongly anisotropic Fermi surface.  相似文献   

7.
Y Jayalaxmi  S Guha  V C Vani  E S R Gopal 《Pramana》1987,28(3):269-275
The electrical capacitance of the binary liquid mixturen. heptane + methanol at its critical composition is studied in both one-phase and two-phase regions. The two-phase capacitance data are used with the known functional forms for the order parameter and the diameter to obtainT c andc c with greater precision. This helps in reducing the number of unknown parameters in the functional form for the one-phase capacitance. The data show consistency with an alpha (α) exponent for dc/dt in the one phase region.  相似文献   

8.
A superconducting transition in the temperature dependence of the ab-plane resistivity of underdoped YBa2Cu3O6+x crystals in the range T c≲30 K has been investigated. Unlike the case of samples with the optimal level of doping, the transition width increased insignificantly with magnetic field, and in the range T≲13 K it decreased with increasing magnetic field. The transition point T c(B) was determined by analyzing the fluctuation conductivity. The curves of B c2(T) measured in the region T/T c≳0.1 did not show a tendency to saturation and had a positive second derivative everywhere, including the immediate neighborhood of T c. The only difference among the curves of B c2(T) for different crystal states is the scales of Tand B, so they can be described in terms of a universal function, which fairly closely follows Alexandrov’s model of boson superconductivity. Zh. éksp. Teor. Fiz. 115, 268–284 (January 1999)  相似文献   

9.
S N Bhatia 《Pramana》1982,18(3):249-259
Heat capacity of MnBr2·4H2O has been measured in the critical region around the Neel temperature. The data can be fitted, over a restricted range of |t|⩽10−2, to the asymptotic power law. The critical exponents and the amplitudesA andA′ are not consistent with any theoretic predictions. However when scaling constraints are imposed, their values agree with the parameters of Ising model. Corrections to scaling are necessary to extend the range of the fit to |t|>10−2. The correction terms are asymmetric giving −1·15±0·25 as the ratio of the amplitudes of the lowest order correction terms,D andD′ above and belowT c. This value is in agreement with the recent predictions of the renormalisation group theory.  相似文献   

10.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

11.
A theoretical framework for treating the effects of magnetic fieldH on the pairing theory of superconductivity is considered, where the field is taken in an arbitrary direction with respect to crystal axes. This is applicable to closed, as well as open normal state Fermi surface (FS), including simple layered metals. The orbital effects of the magnetic field are treated semiclassically while retaining the full anisotropic paramagnetic contribution. Explicit calculations are presented in the limits |H| → |H c2(T)|,T ∼ 0 andTT c(|H|), |H| ∼ 0. Effects of weak nonmagnetic impurity scattering, without vertex corrections, have also been taken into account in a phenomenological way. The final results for the case of open FS and layered materials are found to differ considerably from those of the closed FS. For example, an important parameter,h(T=0)=|Hc2(0)|/[-Tδ|H c2 TT]T{s0} for the case of a FS open ink z-direction with thek z-bandwidth, 4t 3, very small compared to the Fermi energy,E F, is close to 0.5906, compared to 0.7273 for the closed FS, in the clean limit. Analytical results are given for the magnetic field dependence ofT c and the temperature dependence of H c2 for a model of layered superconductors with widely open FS. For a set of band structure parameters for YBa2Cu3O7 used elsewhere, we find reasonable values for the upper critical fieldH c2(0), the slope (dH c2/dT)T c0, anisotropic coherence lengths ζi(T=0),i=x, y, z, and (dT c/d|H|)|H| → 0.  相似文献   

12.
Om Prakash  Ashok Rao  P N Dheer 《Pramana》1992,39(6):655-660
A dilatometer, using the three terminal capacitance technique, suitable for measurement of linear thermal expansion of solids in the temperature range 1.3–300 K is described. The dialtometer is designed such that the mounting system for the specimen does not undergo any significant changes in dimensions when the specimen is heated. The apparatus, therefore, yields in principle absolute values of α, the coefficient of linear thermal expansion. The performance of the apparatus has been checked by measurements on copper in the temperature range of 77–300 K. Some preliminary results on the behaviour of α for Y1Ba2Cu3O6.9 compound in the vicinity of superconducting transition temperature,T c are also described. The system can detect relative changes in length Δl/l 0 of about 10−8. Attempts are being made to improve the sensitivity.  相似文献   

13.
Summary An analysis of superconducting transport properties and magnetic behaviour of d.c. SQUIDs employing YBCO bicrystal grain boundary junctions (GBJs) has been performed. GBJs have been obtained by deposition of ac-axis-oriented YBCO film on a SrTiO3 bicrystal substrate by ICM sputtering technique. Experimental measurements on a YBCO d.c. SQUID with a misorientation angle θ=20° are reported. The SQUID shows a critical temperatureT c∼89 K and a high critical current densityJ c∼3·106 A/cm2 atT=4.2 K. Current-voltage characteristics are close to the behaviour predicted by the resistively shunted junction (RSJ) model and the temperature dependenceJ c(T) shows a linear behaviour at small reduced temperatures and a depressedJ c value close toT c. High-quality flux-voltage curves have been found upT=87 K over a large range of magnetic field. The high reproducibility and the good control of transport properties by the variation of θ make YBCO bicrystal GBJs very useful for applications in electronics. Paper presented at the ?VII Congresso SATT?, Torino, 4–7 October 1994.  相似文献   

14.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

15.
We study the critical temperature T c of SFF trilayers (S is a singlet superconductor, F is a ferromagnetic metal), where the long-range triplet superconducting component is generated at noncollinear magnetizations of the F layers. We demonstrate that T c can be a nonmonotonic function of the angle α between the magnetizations of the two F layers. The minimum is achieved at an intermediate α, lying between the parallel (P, α = 0) and antiparallel (AP, α = π) cases. This implies a possibility of a “triplet” spin-valve effect: at temperatures above the minimum T c Tr but below T c P and T c AP, the system is superconducting only in the vicinity of the collinear orientations. At certain parameters, we predict a reentrant T c (α) behavior. At the same time, considering only the P and AP orientations, we find that both the “standard” (T c P < T c AP) and “inverse” (T c P > T c AP) switching effects are possible depending on parameters of the system.  相似文献   

16.
It has been a long history to study Bose-Einstein condensation (BEC) of weakly in-teracting Bose gas, and several theoretical models have been developed to research uni-form and weakly interacting Bose gas. Ref. [1] summarized all of these models and the corresponding results, which gave a derivation of critical temperature from ideal case 1/30Tc c n,?T = α (1) with a wide spread of parameter c from 0.7 to 2.33, where α is the scattering length of s wave and n is atom number density. Due…  相似文献   

17.
Abstract

We have studied the effects of fast neutron (E>0.1 MeV) irradiation at reactor (~ 360 K) and low (~ 20 K) temperatures on the superconducting properties of polycrystalline orthorhombic YBa2Cu3O7?y . Measurements were made on the superconducting critical temperature Tc , critical current Jc , Meissner effect and magnetic field dependence of Jc . The Tc drops by an irradiation at reactor temperature and Jc increases with increasing fluence. On the other hand with the irradiation at low temperature, Tc rises and Jc increases. Results of observation of Meissner effect and the magnetic field dependence of Jc are consistent with the behavior of Tc and Jc .  相似文献   

18.
The effect of an oxygen excess δ on the magnetic and electrical properties of La1−x Ca x MnO3+δ (x=0.10–0.15) has been studied over wide ranges of temperatures and magnetic fields. As δ increases, the magnetic ordering temperature Tcdecreases by 70–90 K, the magnetoresistance increases (the electrical resistivity decreases by a factor of up to 104 in a field of 9 T), and the effective moment μeff of the paramagnetic susceptibility substantially exceeds the theoretical value at temperatures two to four times higher than T c and undergoes a jump, just as the activation energy of electrical resistivity, at T∼270 K. These results are attributed to the formation of cation vacancies, the localization of electrons in their vicinity with the subsequent formation of magnetic clusters, tunneling (or hopping) of carriers among them, changes in the sizes of clusters with variations in the temperature and magnetic field strength, the onset of frustrations initiated by the competition among different types of exchange interaction, and the dependence of the cluster parameters on the annealing conditions. Annealing of the oxygen-excess samples at high temperatures in vacuum (above 1100°C) restores the samples to a nearly initial state with the magnetic and magnetotransport properties characteristic of weakly doped manganites, as a result of the removal of cation vacancies.  相似文献   

19.
Manoranjan Kar  S Ravi 《Pramana》2002,58(5-6):1009-1012
Electron-doped (Ba1−x La x )MnO3 compounds were prepared for x=0−0.5. Measurements of X-ray diffraction (XRD) at room temperature and temperature variation of dc electrical resistivity down to 20 K were carried out. Samples with x=0.2–0.5 exhibit metal-insulator (M-I) transition. The maximum M-I transition temperature (T c) of 289 K was observed for 30% of La doping (x=0.3). XRD patterns of these samples (x=0.2−0.5) were analyzed using Rietveld refinement. These samples are found to be mostly in single-phase form with orthorhombic symmetry (space group Pbnm). We have found strong correlation between Mn-O-Mn bond angles and T c of M-I transition. The resistivity data below T c could be fitted to the expression ρ=ρ 1+ρ 2 T 2 and this shows that double exchange interaction plays a major role even in Mn4+-rich compound. Above T c the resistivity data were fitted to variable range hopping and small polaron models.  相似文献   

20.
A reliable technique of local chemical characterization of multicomponent semiconductor solid solutions has been developed, and the possibility of its application to the SnTe-SnSe quaternary solid solutions doped with 16 at.% In verified. The behavior of the electrical resistivity of samples of these solid solutions at low temperatures, 0.4–4.2 K, has been studied. The critical temperature T c and the second critical magnetic field H c2 of the superconducting transition and their dependences on the solid-solution composition have been determined. The superconducting transition at T c≈2–3 K is due to hole filling of the In-impurity resonance states, and the observed variation of the superconducting transition parameters with increasing Se content in the solid solution is related to the extrema in the valence band and the In band of resonance states shifting with respect to one another. Fiz. Tverd. Tela (St. Petersburg) 41, 612–617 (April 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号