首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
余光正  刘昱  谢菠荪 《声学学报》2017,42(3):348-360
近场头相关传输函数(HRTF)是双耳听觉科学研究和虚拟听觉重放应用的重要基础数据。近场HRTF测量系统要求具有高的测量效率、精度和重复性,以至于目前未见文献解决真人受试者的近场HRTF测量困难。本文研究并实现了一种计算机控制的近场HRTF的高效测量系统,并提出系统的快速校准方法,首先实现了真人受试者的近场HRTF测量。通过声学、机械与电子硬件和软件的综合设计,提高了测量效率。通过准确校准声源、受试者和双耳传声器的位置,提高了测量精确度和重复性。系统可用于1.0 m范围内不同声源距离的真人受试者以及人工头的近场HRTF测量,单个声源距离的全空间近场HRTF测量时间减少至20 min以内。测量结果表明,系统测量精度满足实际需求,可用于科学研究和个性化近场HRTF测量及数据库建立。   相似文献   

2.
钟小丽  徐秀 《声学学报》2018,43(1):83-90
头相关传输函数(HRTF)是虚拟听觉重放的核心·目前,HRTF的实验室测量缺乏统一的规范。本文研究了不同测量对HRTF的听觉影响。首先提出了扩散场均衡的预处理方法,并对来自5个不同数据库的KEMAR假人的HRTF数据进行了扩散场均衡;然后,采用谱差异评估了不同数据库HRTF测量的频谱差异;最后,采用HRTF合成的虚拟声信号开展了一系列的主观听音实验,包括定位实验和区分实验·结果表明,扩散场均衡是一种有效的HRTF预处理方法,可以减小不同测量对HRTF频谱的影响;不同测量基本上不影响HRTF在12 kHz以下的定位效果,但对音色的影响较大,从而导致听觉上的可区分.   相似文献   

3.
头相关传输函数(HRTF)是自由场情况下点声源到双耳的声学传输函数,它包含了有关声源的主要空间信息,因而在双耳空间听觉的研究方面有非常重要的意义.作为HRTF的一个重要的应用,虚拟听觉则是近二十年发展起来的新技术,它利用HRTF进行信号处理,模拟出声波从声源到双耳的传输,从而在耳机或扬声器重放中虚拟出相应的空间听觉.虚拟听觉技术在有关听觉的科学实验、通信、多媒体与虚拟现实、家用声重放、室内声学设计等科学研究、工程技术、消费电子领域都有重要的应用价值.近十多年来,国际上有关HRTF和虚拟听觉技术的研究发展很快,已成为声学、信号处理、听觉等研究领域的热门与前沿课题,并已在众多的领域得到应用.  相似文献   

4.
提出一种分析头相关传输函数(head-related transfer function,HRTF)幅度谱的听觉空间分辨阈值模型。采用数值计算得到的高空间分辨率HRTF数据,计算了声源空间位置变化引起的HRTF幅度谱的变化,进一步利用Moore响度模型分析双耳响度级差、双耳响度级谱和总响度级等三个听觉感知量的变化。根据现有的3个听觉感知量最小可察觉差异,模型利用双耳响度级差和双耳响度级谱的变化得到的估计结果与心理声学实验一致,因此是一种有效预测听觉空间分辨阈值的方法,可用于为简化虚拟听觉信号处理和数据储存。  相似文献   

5.
提出一种分析头相关传输函数(head-related transfer function,HRTF)幅度谱的听觉空间分辨阈值模型。采用数值计算得到的高空间分辨率HRTF数据,计算了声源空间位置变化引起的HRTF幅度谱的变化,进一步利用Moore响度模型分析双耳响度级差、双耳响度级谱和总响度级等三个听觉感知量的变化。根据现有的3个听觉感知量最小可察觉差异,模型利用双耳响度级差和双耳响度级谱的变化得到的估计结果与心理声学实验一致,因此是一种有效预测听觉空间分辨阈值的方法,可用于为简化虚拟听觉信号处理和数据储存。   相似文献   

6.
谢菠荪  刘路路  江建亮 《声学学报》2021,46(6):1223-1233
双耳重放的目标之一是在耳机重放中产生不同方向和距离的虚拟源感知。本文研究了动态双耳Ambisonics重放自由场虚拟源方向和距离信息的简化信号处理方法。该信号处理方法包括两步:第1步是基于目标声场的球谐函数分解,合成采用扬声器的近场Ambisonics重放中逐级重构目标声场的信号;第2步是采用虚拟扬声器重放的方法,用动态头相关函数滤波处理将Ambisonics的扬声器重放信号转换为双耳重放信号并用耳机重放。进一步研究了动态双耳Ambisonics的阶数对定位效果的影响,为简化信号处理提供依据。对重放产生的双耳声压分析表明,5阶动态双耳Ambisonics重放足以提供听觉方向定位和距离感知的重要信息。同时心理声学的实验结果表明,结合声源距离相关的响度因素,5阶动态双耳Ambisonics重放可产生不同方向和1.0 m以下不同近场距离的自由场虚拟源的听觉感知。本文的方法仅需要固定距离的48个均匀空间方向的远场非个性化HRTF处理,实现了信号处理的简化。   相似文献   

7.
提出了一种改进的5.1通路环绕声的耳机虚拟重放信号处理方法。在对现有的信号处理方法进行分析,指出它会产生不自然主观听觉效果后,通过理论和心理声学实验证明,采用HRTF信号处理、环绕声信号去相关等方法,在克服普通耳机声重放的“头中定位”的缺点、虚拟出多环绕扬声器效果的同时,并未带来新的不自然听觉效果。因此信号处理方法可增加听觉上的包围感,从而改善耳机重放的主观听觉效果。  相似文献   

8.
谢菠荪 《声学学报》2007,32(1):77-82
从空间方向采样的角度对头相关传输函数(HRTF)空间插值、多通路环绕声重放进行了分析,证明了它们在数学上是完全等价的,不同的HRTF空间插值方法对应于不同的多通路环绕声信号馈给,并给出了多通路环绕声信号馈给以及立体声的正弦定理更严格的数学推导。分析指出企图用相邻线性插值的方法得到侧向的HRTF是错误的,并从保证声像定位的角度,对现有的HRTF相邻线性插值公式进行了修正。分析最后指出,HRTF以及虚拟声的许多分析方法可与多通路环绕声相互借鉴。  相似文献   

9.
高妍  湛颖  马欣雨  孟子厚 《声学学报》2020,45(5):749-758
利用视觉和听觉的交互和整合特性,探究视听交互匹配方式在民乐与国画欣赏中的审美增效作用。首先构建具有美感属性类别和情感维度信息标签的民乐和国画样本集,然后根据不同美感类别在共享情感空间下的分布情况,提出了基于情感维度比例关系的近似距离类别匹配法。通过基于耳机重放虚拟听音与视觉刺激相结合的实验方式验证了该视听匹配方法的有效性,并创新性的提出基于模糊统计理论的美感测度计算方法以及审美增益的量化数值计算模型。该计算结果显示听觉对视觉的美感平均增益率约36%,视觉对听觉的美感平均增益率约33%。视觉对于正性审美情绪的作用相对较大,听觉对于负性审美情绪的影响较大。   相似文献   

10.
赵童  谢菠荪  朱俊  梁林达 《声学学报》2023,48(1):215-224
远场头相关传输函数(HRTF)随声源方向、频率以及个体变化。完整HRTF的数据量很大,且测量或计算每个人的高方向分辨率HRTF是很困难的。本文提出一种从少量方向的测量或计算重构高方向分辨率HRTF的方法。基于HRTF张量分解,远场HRTF可分解为方向模态、频率模态和少量个体模态的张量组合。通过对已有的基线HRTF数据库进行统计分析,可得到与个体无关的方向模态矩阵和频率模态矩阵。而对于任何新的个体,只要少量方向的测量或计算HRTF即可估计出个体模态的变化,并重构出高方向分辨率的HRTF数据。对两个HRTF数据库的计算表明,采用11个个体模态即可表示超过98%的个体相关的HRTF能量变化,并从大约30个方向的测量或计算HRTF重构出高方向分辨率的HRTF幅度。心理声学实验验证了提出的方法。该方法可用于简化个性化HRTF的测量或计算。  相似文献   

11.
Head-related transfer functions(HRTFs) are the core of virtual auditory display and relevant applications. However,a standard method for HRTF measurements has not been established. This work examines the influence of different HRTF measurement methodologies on auditory perception. First, the diffusion-field equalization was proposed and applied to HRTFs of a single dummy head(KEMAR) from five different datasets. Then,the spectral deviations among the HRTFs were calculated and analyzed. Finally, a series of subjective listening experiments(including localization and discrimination experiments) were conducted. Results indicate the diffusion-field equalization is an effective pre-processing method which reduces the difference in HRTF magnitude spectra caused by different measurement methodologies. Moreover,the HRTFs from different measurement methodologies have similar localization performance below 12 kHz, whereas the inter-dataset differences in timbre are distinct leading to audible discrimination.  相似文献   

12.
The fidelity of reproducing free-field sounds using a virtual auditory display was investigated in two experiments. In the first experiment, listeners directly compared stimuli from an actual loudspeaker in the free field with those from small headphones placed in front of the ears. Headphone stimuli were filtered using head-related transfer functions (HRTFs), recorded while listeners were wearing the headphones, in order to reproduce the pressure signatures of the free-field sounds at the eardrum. Discriminability was investigated for six sound-source positions using broadband noise as a stimulus. The results show that the acoustic percepts of real and virtual sounds were identical. In the second experiment, discrimination between virtual sounds generated with measured and interpolated HRTFs was investigated. Interpolation was performed using HRTFs measured for loudspeaker positions with different spatial resolutions. Broadband noise bursts with flat and scrambled spectra were used as stimuli. The results indicate that, for a spatial resolution of about 6 degrees, the interpolation does not introduce audible cues. For resolutions of 20 degrees or more, the interpolation introduces audible cues related to timbre and position. For intermediate resolutions (10 degrees - 15 degrees) the data suggest that only timbre cues were used.  相似文献   

13.
This paper describes an alternative approach to elevation coding in an auditory display delivered through headphones. Objects in auditory display are presented as sound sources. Direction dependent cues for auditory display construction are most effectively presented by individualised head-related transfer functions (HRTFs), while generalised HRTFs give satisfactory results only in the azimuth. Since measurements of individualised HRTFs are impractical, we propose an alternative method for coding elevation. This method requires some time for the listener to adapt to it. The learning process can be shortened significantly if the coding is similar to natural human perception of sound elevation. To test human capability of distinguishing between different sounds, several sound sets were created and presented to test subjects. Five sound sets with the best resolution were then used to create auditory display of a graphical user interface (GUI). Test subjects were able to learn this display in relatively short time, which justifies the method and gives opportunity for further research.  相似文献   

14.
Transfer effects of playing an auditory game with a virtual auditory display (VAD) were investigated. Furthermore, we analyzed the effects of playing the VAD game on sound localization performance under subjects’ own head-related transfer functions (HRTFs) and HRTFs fitted from those of 16 other adults. Participants performed sound localization tasks initially and 2 weeks later to show the effects. The VAD game players were of three groups, using own HRTFs, fitted HRTFs, and no playing (control). The VAD game-playing results revealed that: (1) the hit rate of the sound localization task for real sound sources increased approximately 20%; (2) the vertical and horizontal localization error decreased significantly; (3) sound localization performance using fitted HRTFs was similar to performance using own HRTFs. Follow-up tests revealed that transfer effects persisted more than 1 month, suggesting that the effects of playing the VAD game transfer to sound localization performance.  相似文献   

15.
The synthesis of individual virtual auditory space (VAS) is an important and challenging task in virtual reality. One of the key factors for individual VAS is to obtain a set of individual head related transfer functions (HRTFs). A customization method based on back-propagation (BP) artificial neural network (ANN) is proposed to obtain an individual HRTF without complex measurement. The inputs of the neural network are the anthropometric parameters chosen by correlation analysis and the outputs are the characteristic parameters of HRTFs together with the interaural time difference (ITD). Objective simulation experiments and subjective sound localization experiments are implemented to evaluate the performance of the proposed method. Experiments show that the estimated non-individual HRTF has small mean square error, and has similar perception effect to the corresponding one obtained from the database. Furthermore, the localization accuracy of personalized HRTF is increased compared to the non-individual HRTF.  相似文献   

16.
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.  相似文献   

17.
Headphone rendering of nearby virtual sound sources represents to date an open issue in 3-D audio, due to a number of technical challenges and temporal requirements involved in the measurement of individual Head-Related Transfer Functions (HRTFs). In order to tackle this problem, we propose a filter model of near-field effects based on the Distance Variation Function (Kan et al., 2009). Thanks to its simple structure and low order, the model can be applied to any far-field virtual auditory display to yield a realistic and computationally efficient near-field compensation of spectral and binaural effects. The model is subjectively evaluated in two psychophysical experiments where the relative distance of pairs of virtually rendered sound sources is judged. Results show that even though sound intensity overshadows subtler near-field effects when it is available as a cue for distance, the model is capable of offering relative distance information of near lateral virtual sources when intensity cues are removed. Furthermore, performances of the model in relative distance rendering are compared to those of alternative near-field rendering methods available in the literature.  相似文献   

18.
The efficacy of a sound localization training procedure that provided listeners with auditory, visual, and proprioceptive/vestibular feedback as to the correct sound-source position was evaluated using a virtual auditory display that used nonindividualized head-related transfer functions (HRTFs). Under these degraded stimulus conditions, in which the monaural spectral cues to sound-source direction were inappropriate, localization accuracy was initially poor with frequent front-back reversals (source localized to the incorrect front-back hemifield) for five of six listeners. Short periods of training (two 30-min sessions) were found to significantly reduce the rate of front-back reversal responses for four of five listeners that showed high initial reversal rates. Reversal rates remained unchanged for all listeners in a control group that did not participate in the training procedure. Because analyses of the HRTFs used in the display demonstrated a simple and robust front-back cue related to energy in the 3-7-kHz bandwidth, it is suggested that the reductions observed in reversal rates following the training procedure resulted from improved processing of this front-back cue, which is perhaps a form of rapid perceptual recalibration. Reversal rate reductions were found to generalize to untrained source locations, and persisted at least 4 months following the training procedure.  相似文献   

19.
Head-related transfer functions (HRTFs) vary with individuals, and in practice, measuring HRTFs with high directional resolution for each individual is tiresome. Based on a basis functions representation of HRTFs, the present work proposes a method for recovering individual HRTFs from a small set of measurements. The HRTFs are represented by a combination of a small set of spatial basis functions (SBFs) with frequency- and individual-dependent weights. The SBFs are derived by applying spatial principal component analysis to a baseline HRTF dataset with high directional resolution. The individual weights for any subject outside the dataset are estimated from measurements at a few source directions, and then the HRTFs with high directional resolution are recovered by combining the SBFs and the individual weights. In an illustrative case, the SBFs derived from a baseline dataset that includes 20 subjects are used to recover the HRTF magnitudes for six subjects outside the baseline dataset. Results show that individual HRTF magnitudes can be recovered from measurements at 73 directions with a mean signal-to-distortion ratio of 19 dB. The proposed method is also applicable to recovering head-related impulse responses. The results of psychoacoustic experiments indicate that in most cases the recovered and measured HRTFs are indistinguishable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号