首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用射频溅射法制备立方氮化硼薄膜   总被引:2,自引:0,他引:2       下载免费PDF全文
田凌  丁毅  陈浩  刘钧锴  邓金祥  贺德衍  陈光华 《物理学报》2006,55(10):5441-5443
利用射频溅射方法在n型Si(111)衬底上制备出立方相含量接近100%且粘附性较高的立方氮化硼(c-BN)薄膜.傅里叶变换红外谱(FTIR)的结果表明,基底负偏压对薄膜立方相含量和薄膜压应力有很大影响,另外,衬底的电阻率对c-BN生长和薄膜的压应力也有一定的影响. 关键词: 立方氮化硼 射频溅射 压应力 基底负偏压  相似文献   

2.
张敏  林国强  董闯  闻立时 《物理学报》2007,56(12):7300-7308
用脉冲偏压电弧离子镀技术在玻璃基片上制备均匀透明的TiO2薄膜.利用X射线衍射仪、原子力显微镜、扫描电子显微镜、紫外-可见透射光谱仪和纳米压痕仪等手段,对不同脉冲负偏压下合成薄膜的相结构、微观结构、表面形貌、力学和光学性能进行表征.结果表明,沉积态薄膜为非晶态.脉冲负偏压对薄膜性能有明显的影响.随偏压的增加,薄膜厚度、硬度和弹性模量均先增大后减小,前者峰值出现在100—200 V负偏压范围,后两者则在250—350V范围.300 V负偏压时薄膜硬度最高,薄膜达到原子级表面光滑度,均方 关键词: 2薄膜')" href="#">TiO2薄膜 脉冲偏压电弧离子镀 硬度 折射率  相似文献   

3.
有机衬底SnO2:Sb透明导电膜的制备与特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
常温下,采用射频磁控溅射法在有机的柔性衬底上制备出了SnO2:Sb透明导电膜,并对薄膜的结构和光电性质进行了研究.制备的样品为多晶薄膜,并且保持了二氧化锡的金红石结构.性能良好的薄膜电阻率为6.5×10-3Ω·cm,载流子浓度为1.2×1020cm-3,霍耳迁移率是9.7cm2·V-1·s-1.薄膜在可见光区的平均透过率达到了85%. 关键词: 柔性衬底 SnO2:Sb透明导电膜 射频磁控溅射法  相似文献   

4.
采用直流脉冲反应磁控溅射方法生长W掺杂ZnO(WZO)透明导电氧化物薄膜并研究了衬底温度对薄膜微观结构、组分、表面形貌以及光电性能的影响.实验结果表明,WZO薄膜具有良好的(002)晶面择优取向,且适当的衬底温度是制备优质WZO薄膜的关键因素.随着衬底温度升高,薄膜表面粗糙度先增大后减小;衬底温度较高时,薄膜的结构致密,结晶质量好,电子迁移率高.当衬底温度为325℃时,WZO薄膜获得最低电阻率9.25×10-3Ω·cm,方块电阻为56.24Ω/□,迁移率为11.8 cm2 V-1·s-1,其在可见光及近红外区域(400—1500 nm)范围的平均透过率达到85.7%.  相似文献   

5.
为获得高性能的柔性透明导电薄膜,采用磁控溅射技术在柔性PC衬底上制备出了STO(30nm)/Ag/STO(30nm)复合结构透明导电薄膜.分别对不同中间Ag层厚度薄膜的结构、光学和电学性质进行了研究.研究发现:随着中间Ag层厚度的增加,可见光区的平均透过率先增大后减小,电阻率和方块电阻持续减小;当中间Ag层厚度为11nm时,复合结构透明导电薄膜具有最佳的品质因子为14.23×10~(-3)Ω~(-1),此时,其可见光区平均透过率为82%,方块电阻为9.2Ω/sq..  相似文献   

6.
为了制备用于挠性电路板中的挠性覆铜板,在聚酰亚胺上使用中频磁控溅射方法制备金属Cu膜.实验中,通过改变制备温度、衬底偏压、制备时间等工艺参数,制备出导电性符合要求的Cu薄膜.用X射线衍射仪(XRD)、扫描电镜(SEM)研究薄膜的成分、结构以及表面形貌,用触针式台阶仪、四探针电阻测量仪测量薄膜的膜厚以及电阻,并计算薄膜的电阻率.最终得到制备导电性符合工业应用标准的Cu膜的最佳工艺条件:制备温度100℃,直流偏压50 V,无脉冲偏压.  相似文献   

7.
La0.5Sr0.5CoO3薄膜的外延生长及其机理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用脉冲激光制膜法,在多种衬底和温度条件下,系统研究了La0.5Sr0.5CoO3(LSCO)薄膜的结构和外延生长特性,在LaAlO3,SrTiO3和MgO衬底上实现了LSCO薄膜的外延生长.外延生长的薄膜具有低的电阻率和金属性导电特征.研究表明,外延生长的最佳温度范围为700—800℃,最佳衬底为LaAlO3.并着重探讨了衬底材料和淀积温度等多种因素对LSCO薄膜的生长与性 关键词:  相似文献   

8.
韩军  张鹏  巩海波  杨晓朋  邱智文  自敏  曹丙强 《物理学报》2013,62(21):216102-216102
本文研究了脉冲激光沉积(PLD)生长过程中, 铝掺量、氧压及衬底温度等实验参数对ZnO:Al(AZO)薄膜生长的影响, 并利用扫描电子显微镜、原子力显微镜、X射线衍射、霍尔效应、光透射光谱等实验手段对其透明导电性能进行了探讨. 变温霍尔效应和光透射测量表明, 当靶材中铝掺量大于0.5 wt%时, 所制备AZO薄膜中铝施主在80 K时已完全电离, 因Bernstein-Moss (BM) 效应其带隙变大, 均为重掺杂简并半导体. 进一步系统研究了氧压和衬底温度对AZO薄膜透明导电性能的影响, 实验发现当氧压为1 Pa, 衬底温度为200 ℃时, AZO 导电性能最好, 其霍尔迁移率为28.8 cm2/V·s, 薄膜电阻率最小可达2.7×10-4 Ω·cm, 且在可见光范围内光透过率超过了85%. 氧压和温度的增加, 都会导致薄膜电阻率变大. 关键词: 脉冲激光沉积法 ZnO:Al薄膜 透光性 导电性  相似文献   

9.
利用离子源辅助的电子束热蒸发技术研制了高性能的Sr-F共掺杂SnO2( SFTO)基透明导电薄膜。所制备的SFTO薄膜具有良好的导电性和透过率,电阻率低于3.9×10-3Ω·cm,380~2500 nm波段的平均透过率大于85%,功函数约为5.10 eV。 SFTO透明导电薄膜为非晶态薄膜,具有较好的表面平整度( Rq <1.5 nm)。与工业上F掺杂SnO2薄膜的衬底温度(>450℃)相比,本文所用的衬底温度仅为300℃,有望直接将SnO2基透明导电非晶薄膜制备到柔性的塑料( PI、PAR或PCO)衬底上以获得性能良好的柔性电极。  相似文献   

10.
利用真空反应蒸发技术,在氧分压约为8.5×10-2Pa、衬底温度为400℃条件下蒸发高纯度的铟、锡和铜,在玻璃衬底上制备出Sn1-x(In1-yCuy)xO薄膜.研究了蒸发源材料质量比不同的样品的薄膜结构、透过率、薄膜的方块电阻和电阻率与温度的关系.实验结果表明,Sn1-x(In1-yCuy)xO透明导电薄膜具有优良的光电特性,而且制备出的Sn1-x(In1-yCuy)xO薄膜中In的含量大大减少,可以成为ITO薄膜的潜在替代材料.  相似文献   

11.
Thin polycrystalline films of SnO2 and antimony doped SnO2 have been prepared by simple economic electroless deposition technique. The transmittance in the visible range and the reflectance in the i.r. range for SnO2 films are ~80% and ~70%, respectively, with resistivity ~10?2 Ω cm. On the other hand, antimony doped SnO2 films have transmittance in the visible range and reflectance in the i.r. range, as good as ~86% and ~83%, respectively, with resistivity as low as ~10?3Ω cm. By vacuum annealing, the resistivity of both types of films has been brought down as low as ~10?3 and ~10?4 Ω cm, respectively.  相似文献   

12.
在室温及不同的氧氩比条件下,采用射频磁控溅射Ag层和直流磁控溅射SnO2层,在载玻片衬底上制备出了SnO2/Ag/SnO2多层薄膜.用霍尔效应测试仪、四探针电阻测试仪和紫外-可见-近红外光谱仪等表征了薄膜的电学性质和光学性质.实验结果表明:当氧氩比为1:14时,所制得的薄膜的光电性质优良指数最大,为1.69×10-2 Ω-1;此时,薄膜的电阻率为9.8×10-5 Ω·cm,方电阻为9.68 Ω/sq,在400~800 nm可见光区的平均光学透射率达85%;并且,在氧氩比为1:14时,利用射频磁控溅射Ag层和直流磁控溅射SnO2层在PET柔性衬底上制备出了光电性质优良的柔性透明导电膜,其在可见光区的平均光学透过率达85%以上,电阻率为1.22×10-4 Ωcm,方电阻为12.05 Ω/sq.  相似文献   

13.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.  相似文献   

14.
SnO2 thin films have been successfully deposited on α-Al2O3 (0 1 2) substrates by metalorganic chemical vapor deposition (MOCVD) in the temperature range 500-700 °C. The films were epitaxially grown in the tetragonal SnO2 phase and were (1 0 1) oriented. In-plane orientation relationship [0 1 0]SnO2||[1 0 0]Al2O3 and [1 0 1?]SnO2||[1? 2? 1]Al2O3 was determined between the film and substrate. Photoluminescence (PL) spectra measured at room temperature revealed that the film grown at 700 °C showed an intense ultra-violet (UV) PL peak at 333 nm, which was a band-edge emission peak in SnO2 films. At a temperature of 13 K, a new broad PL band centered at about 480 nm was observed. The corresponding PL mechanisms are discussed in detail.  相似文献   

15.
《Current Applied Physics》2020,20(3):462-469
Transparent heat-insulating SnO2 films were prepared on the glass substrate with sol-gel. The effects of Sb doping on the structure and photoelectric properties of the films were investigated. The films were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Ultraviolet–Visible-Near Infrared Spectrometer (UV-VIS-NIR) and Hall Effect tester. The results show that the doping of Sb did not change the basic crystal structure of the SnO2 film, but reduced the crystallinity of the film. With the increase of Sb doping, the grain size decreases first and then maintains basically invariable. The sheet resistance of the film decreases first and then increases. The transmittance of the substrate glass coated with this film (hereinafter referred to as the film's transmittance) in the near-infrared region (780–2500 nm) decreases from 92.55% to 60.48%, and increases a little when the doping amount exceeded 11 mol%. And its transmittance of visible light (380–780 nm) fluctuated slightly between about 81% and 86%.  相似文献   

16.
Transparent conducting antimony-doped tin oxide (SnO2:Sb) films were deposited on organic substrates by r.f. magnetron-sputtering. Polycrystalline films with a resistivity of ≈ 6.5×10-3 Ω cm, a carrier concentration of≈ 1.2×1020 cm-3 and a Hall mobility of ≈ 9.7 cm2 v-1 s-1 were obtained. The average transmittance of these films reached 85% in the wavelength range of the visible spectrum. Received: 20 April 2001 / Accepted: 23 July 2001 / Published online: 17 October 2001  相似文献   

17.
Transparent conducting SnO2:Cd thin films were prepared by RF reactive magnetron co-sputtering on glass slides at a substrate temperature of 500 °C using CdO as cadmium source. The films were deposited under a mixed argon/oxygen atmosphere. The structural, optical and electrical properties were analyzed as a function of the Cd amount in the target. The X-ray diffraction shows that polycrystalline films were grown with both the tetragonal and orthorhombic phases of SnO2. The obtained films have high transmittance and conductivity. The figure of merit of SnO2:Cd films are in the order of 10−3 Ω−1, which suggests that these films can be considered as candidates for transparent electrodes.  相似文献   

18.
K0.5Bi0.5TiO3 thin films were deposited on fused quartz, n-type Si(100) and Pt/TiO2/SiO2/Si substrates by repeated coating/dying cycles. X-ray diffraction analysis shows that the films annealed at 700 °C for 10 min present perovskite phase. Atomic force microscopy reveals that the surface morphology is smooth, the grain sizes of the films on Si(100) are quite larger than on fused quartz. The capacitance-voltage hysteresis loops at various sweeping speed are collected as are polarization types. The films in the ON and OFF states are relatively stable. The films also exhibit a hysteresis loop at an applied voltage of 4 V, with a remanent polarization of 9.3 μC/cm2 and a coercive voltage of 2 V. The insulating property of negative bias voltage is better than that of positive bias voltage. The transmittance of the films is between 74 and 82% in the wavelength range of 200-2000 nm.  相似文献   

19.
Tin oxide (SnO2) thin films have been grown on glass substrates using atmospheric pressure chemical vapour deposition (APCVD) method. During the deposition, the substrate temperature was kept at 400°C–500°C. The structural properties, surface morphology and chemical composition of the deposited film were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Rutherford back scattering (RBS) spectrum. XRD pattern showed that the preferred orientation was (110) having tetragonal structure. The optical properties of the films were studied by measuring the transmittance, absorbance and reflectance spectra between λ = 254 nm to 1400 nm and the optical constants were calculated. Typical SnO2 film transmits ∼ 94% of visible light. The electrical properties of the films were studied using four-probe method and Hall-voltage measurement experiment. The films showed room temperature conductivity in the range 1.08 × 102 to 1.69 × 102 Ω−1cm−1.  相似文献   

20.
This report investigated the structural, optical and electrical properties of V-doped SnO2 thin films deposited using spray pyrolysis technique. The SnO2:V films, with different V-content, were deposited on glass substrates at a substrate temperature of 550°C using an aqueous ethanol solution consisting of tin and vanadium chloride. X-ray diffraction studies showed that the SnO2:V films were polycrystalline only with tin oxide phases and the preferred orientations are along (1 1 0), (1 0 1), (2 1 1) and (3 0 1) planes. Using Scherrer formula, the grain sizes were estimated to be within the range of 25–36 nm. The variation in sheet resistance and optical direct band gap are functions of vanadium doping concentration. Field emission scanning electron microscopy (FESEM) revealed the surface morphology to be very smooth, yet grainy in nature. Optical transmittance spectra of the films showed high transparency of about ~69–90% in the visible region, decreasing with increase in V-doping. The direct band gap for undoped SnO2 films was found to be 3.53 eV, while for higher V-doped films it shifted toward lower energies in the range of 3.27–3.53 eV and then increased again to 3.5 eV. The Hall effect and Seebeck studies revealed that the films exhibit n-type conductivity. The thermal activation energy, Seebeck coefficient and maximum of photosensitivity in the films were found to be in the range of 0.02–0.82 eV (in the low-temperature range), 0.15–0.18 mV K?1 (at T = 350 K) and 0.96–2.84, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号