首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Ge self-assembled quantum dots (SAQDs) grown on a relaxed Si0.75Ge0.25 buffer layer were observed using an atomic force microscopy (AFM) and a transmission electron microscopy (TEM). The effect of buried misfit dislocations on the formation and the distribution of Ge SAQDs was extensively investigated. The Burgers vector determination of each buried dislocation using the g·b = 0 invisibility criterion with plane-view TEM micrographs shows that Ge SAQDs grow at specific positions related to the Burgers vectors of buried dislocations. The measurement of the lateral distance between a SAQD and the corresponding misfit dislocation with plane-view and cross-sectional TEM images reveals that SAQDs form at the intersections of the top surface with the slip planes of misfit dislocations. The stress field on the top surface due to misfit dislocations is computed, and it is found that the strain energy of the misfit dislocations provides the preferential formation sites for Ge SAQDs nucleation.  相似文献   

2.
In this paper we address the problems related to critical misfit and thickness in epilayer-substrate combinations of comparable bond strengths; specifically the case in which a pseudomorphic monolayer (ML) is stable and the critical thickness is about three MLs or less. Of particular interest are the average energies related to misfit strain f KS and misfit dislocations (MDs)—in the latter case the individual contributions of the oscillatory strains V and the epilayer-substrate disregistry VMD. The individual energies are of interest because they may play different roles in the realization of specific growth modes. The analytical approach involves the following assumptions: (a) a rigid substrate as source of a periodic epilayer atom-substrate interaction potential which we model in terms of a low order truncated Fourier series; and (b) an epilayer which (i) deforms harmonically with zero strain gradient normal to the film plane, (ii) grows in Kurdjumov-Sachs (KS) orientation due to small misfit. f KS and in the layer-by-layer growth mode.Arguments are presented claiming that this interfacial situation may be approximated by a one-dimensional problem in which epilayer stiffness constants and equilibrium structure, as well as epilayer-substrate interaction depend on epilayer thickness; which poses a complex problem. An approximate solution could be obtained by assuming these quantities to be independent of thickness and proximities of the vacuum and the substrate. The most prominent conclusions are that the equilibrium density of MDs and hence the transition from misfit accommodation by MS to one containing MDs is a catastrophic process and that sustained minimum energy may require the overcoming of an energy barrier. While elementary implementation of the results to equilibrium growth mode theory suggests—independently of the catastrophic nature—that energetically favored misfit strain relief by misfit dislocations may, or may not, effect a transition to Stranski-Krastanov growth, a crude numerical calculation favors the transition. A proper implementation of the results require extensive numerical calculations and is planned for the near future.  相似文献   

3.
Heterostructures Ge/Ge x Si1 ? x /Si(001) grown by molecular beam epitaxy have been investigated using atomic scale high-resolution electron microscopy. A germanium film (with a thickness of 0.5–1.0 μm) grown at a temperature of 500°C is completely relaxed. An intermediate Ge0.5Si0.5 layer remains in a strained metastable state, even though its thickness is 2–4 times larger than the critical value for the introduction of 60° misfit dislocations. It is assumed that the Ge/GeSi interface is a barrier for the penetration of dislocations from a relaxed Ge layer into the GeSi layer. This barrier is overcome during annealing of the heterostructures for 30 min at a temperature of 700°C, after which dislocation networks having different degrees of ordering and consisting predominantly of edge misfit dislocations are observed in the Ge/GeSi and GeSi/Si(001) heteroboundaries.  相似文献   

4.
An analysis is made of the specific features in the generation and evolution of partial misfit dislocations at the vertices of V-shaped configurations of stacking fault bands, which terminate in the bulk of the growing film at 90° partial Shockley dislocations. The critical thicknesses h c of an epitaxial film, at which generation of such defect configurations becomes energetically favorable, are calculated. It is shown that at small misfits, the first to be generated are perfect misfit dislocations and at large misfits, partial ones, which are located at the vertices of V-shaped stacking-fault band configurations emerging onto the film surface. Possible further evolution of stacking-fault band configurations with increasing film thickness are studied.  相似文献   

5.
The dependence of elastic energy on relaxation parameters ρ x and ρ y varying in limits from 0 to 1 is analyzed for near-surface layers of an In0.1Ga0.9As epitaxial film on a GaAs (001) substrate whose thickness exceeds the distance between neighboring misfit dislocations.  相似文献   

6.
High-resolution cross-sectional and conventional plan-view transmission electron microscope observations have been carried out for molecular beam epitaxially grown GaAs films on vicinal Si (001) before and after annealing as a function of film thicknesses and observation directions between two orthogonal 110 directions. Two groups of misfit dislocations are characterized at the interface regions between GaAs and Si by analyzing whether their extra half planes exist in the film or the substrate side. Group I misfit dislocations due to stress caused by a lattice misfit between GaAs and Si consist of partial dislocations and 60° and 90° complete dislocations in an as-grown state. With an increase in the film thickness, partial dislocations decrease and complete dislocations increase. After annealing, partial dislocations almost completely disappear and 90° perfect dislocations are predominantly observed. Group II misfit dislocations due to thermal-expansion misfit-induced stress are all 60°-type complete dislocations regardless of film thicknesses and annealing treatment.On leave from Central Research Laboratory, Hitachi, Ltd., Tokyo 185, Japan  相似文献   

7.
The energy characteristics of orthogonal rows of partial misfit dislocations with V-shaped stacking faults in thin-film heteroepitaxial systems are analyzed theoretically. It is shown that they should appear only in very thin epitaxial films of nanoscopic thickness and for high values of the mismatch exceeding a definite value. Under these conditions partial misfit dislocations associated with V-shaped stacking faults are typical elements of the defect structure of nanolayer heterosystems. For smaller mismatches and larger films thicknesses total misfit dislocations should form. Fiz. Tverd. Tela (St. Petersburg) 40, 2059–2064 (November 1998)  相似文献   

8.
CoFe2O4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface.  相似文献   

9.
One-dimensional SiGe superlattices with periods ranging from 100 to 800 Å have been deposited on Si substrates by periodically varying the Ge content of a mixed Si1-x Ge x multilayer structure fromx=0 tox=0.15. The deposition was successful, employing and UHV evaporation technique at a substrate temperature of 750°C fulfilling the four conditions: Single crystal growth, no interdiffusion, two-dimensional growth, and pseudomorphic growth. It is shown that mismatch above 8 · 10?3 favours growth by three-dimensional nucleation. The experimentally determined spacing of misfit dislocations is compared with theoretical results obtained by van der Merwe. The pseudomorphic growth behaviour of layers thinner than a critical thickness could be confirmed.  相似文献   

10.
The structural properties of InN thin films, grown by rf plasma-assisted molecular beam epitaxy on Ga-face GaN/Al2O3(0001) substrates, were investigated by means of conventional and high resolution electron microscopy. Our observations showed that a uniform InN film of total thickness up to 1 μm could be readily grown on GaN without any indication of columnar growth. A clear epitaxial orientation relationship of , was determined. The quality of the InN film was rather good, having threading dislocations as the dominant structural defect with a density in the range of 109–1010 cm−2. The crystal lattice parameters of wurtzite InN were estimated by electron diffraction analysis to be a=0.354 nm and c=0.569 nm, using Al2O3 as the reference crystal. Heteroepitaxial growth of InN on GaN was accomplished by the introduction of a network of three regularly spaced misfit dislocation arrays at the atomically flat interface plane. The experimentally measured distance of misfit dislocations was 2.72 nm. This is in good agreement with the theoretical value derived from the in-plane lattice mismatch of InN and GaN, which indicated that nearly full relaxation of the interfacial strain between the two crystal lattices was achieved.  相似文献   

11.
An effective compliant substrate for Si1-xGex growth is presented. A silicon-on-insulator substrate was implanted with B and O forming 20 wt % borosilicate glass within the SiO2. The addition of the borosilicate glass to the buried oxide acted to reduce the viscosity at the growth temperature of Si1-xGex, promoting the in situ elastic deformation of the thin Si (∼20 nm) layer on the insulator. The sharing of the misfit between the Si and the Si1-xGex layers was observed and quantified by double-axis X-ray diffraction. In addition, the material quality was assessed using cross-sectional transmission electron microscopy, photoluminescence and etch pit density measurements. No misfit dislocations were observed in the partially relaxed 150-nm Si0.75Ge0.25 sample as-grown on a 20% borosilicate glass substrate. The threading dislocation density was estimated at 2×104 cm-2 for 500-nm Si0.75Ge0.25 grown on the 20% borosilicate glass substrate. This method may be used to prepare compliant substrates for the growth of low-dislocation relaxed SiGe layers. Received: 4 January 2001 / Accepted: 30 May 2001 / Published online: 17 October 2001  相似文献   

12.
It has been shown that, in the GeSi/Si(001) heterosystem at lattice parameter mismatches of ~2% and more, a small critical thickness of the introduction of dislocations leads to the implementation of the mechanism of induced nucleation of misfit dislocations. This mechanism consists in that the stress field of an already existing 60° dislocation provokes introduction of a secondary 60° dislocation with an opposite-sign screw component. As a result of the interaction of such dislocation pairs, edge misfit dislocations are formed, which do control the plastic relaxation process. This mechanism is most efficient when dislocations are introduced at the GeSi film thickness only slightly exceeding the critical thickness of the introduction of 60° dislocations, and there are threading dislocations. The dominant type of misfit dislocations (60° or edge) in the Ge-on-Si(001) system can be controlled by varying the mismatch parameter in the heteropair.  相似文献   

13.
Several groups have reported the misfit dislocation structures in Au/Ni0.8Fe0.2 multilayers where the lattice parameter misfit is very large. To explore the factors controlling such structures, molecular dynamics simulations have been used to simulate the vapour-phase growth of (111)-oriented Au/Ni0.8Fe0.2 multilayers. The simulations revealed the formation of misfit dislocations at both the gold-on-Ni0.8Fe0.2 and the Ni0.8Fe0.2-on-gold interfaces. The dislocation configuration and density were found to be in good agreement with previously reported high-resolution transmission electron microscopy observations. Additional atomic-scale simulations of a model nickel–gold system indicated that dislocations are nucleated as the first nickel layer is deposited on gold. These dislocations have an (a/6)?112? Burgers vector, typical of a Shockley partial dislocation. Each dislocation creates an extra {220} plane in the smaller lattice parameter nickel layer. These misfit-type dislocations effectively relieve misfit strain. The results also indicated that the dislocation structure is insensitive to the energy of the depositing atoms. Manipulation of the deposition processes is therefore unlikely to reduce this component of the defect population.  相似文献   

14.
The behaviour of nano-islands located on an Au(1 0 0) single crystal surface in contact with a room temperature molten salt, that is, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), has been investigated using electrochemical atomic force microscopy (EC-AFM) under potential control. It was found from the in situ EC-AFM observations that a nano-island located on an Au(1 0 0) electrode collapses in EMImBF4 in the potential range between −1.05 and 0.2 V (vs. Ag/Ag+ in EMImBF4). It was also found that the nano-islands decay faster when the Au(1 0 0) electrode potential is more positive. These in situ EC-AFM observations reveal that the behaviour of the nano-island in the EMImBF4 shown above is quite similar to that observed in a sulfuric acid aqueous solution.  相似文献   

15.
A model for determining the critical thickness of a film h c is developed to introduce misfit dislocations in the slip planes of a film and a substrate parallel to the interphase boundary (111). Experimental values h c that agree with calculated values are determined for the Ge/Si(111) and Si3N4/Ge(111) heterosystems. The two-level epitaxial growth of Ge on Si is attained in the regime of combining the step-layer and 2D island growth mechanisms.  相似文献   

16.
To understand how a new phase forms between two reactant layers, MgAl2O4 (spinel) has been grown between MgO (periclase) and Al2O3 (corundum) single crystals under defined temperature and load. Electron backscatter diffraction data show a topotaxial relationship between the MgO reactant and the MgAl2O4 reaction product. These MgAl2O4 grains are misoriented from perfect alignment with the MgO substrate by ~2–4°, with misorientation axes concentrated in the interface plane. Further study using atomic resolution scanning transmission electron microscopy shows that in 2D the MgAl2O4/MgO interface has a periodic configuration consisting of curved segments (convex towards MgO) joined by regularly spaced misfit dislocations occurring every ~4.5 nm (~23 atomic planes). This configuration is observed along the two equivalent [1 0 0] directions parallel to the MgAl2O4/MgO interface, indicating that the 3D geometry of the interface is a grid of convex protrusions of MgAl2O4 into MgO. At each minimum between the protrusions is a misfit dislocation. This geometry results from the coupling between long-range diffusion, which supplies Al3+ to and removes Mg2+ from the reaction interface, and interface reaction, in which climb of the misfit dislocations is the rate-limiting process. The extra oxygen atoms required for dislocation climb were likely derived from the reactant MgO, leaving behind oxygen vacancies that eventually form pores at the interface. The pores are dragged along by the propagating reaction interface, providing additional resistance to interface motion. The pinning effect of the pores leads to doming of the interface on the scale of individual grains.  相似文献   

17.
Heterostructures of the “strained Ge film/artificial InGaAs layer/GaAs substrate” type have been grown by molecular beam epitaxy. A specific feature of these structures is that the plastically relaxed (buffer) InGaAs layer has the density of threading dislocations on a level of 105–106 cm−2. These dislocations penetrate into the strained Ge layer to become sources of both 60° and 90° (edge) misfit dislocations (MDs). Using the transmission electron microscopy, both MD types have been found at the Ge/InGaAs interface. It has been shown that the presence of threading dislocations inherited from the buffer layer in a tensile-strained Ge film favors the formation of edge dislocations at the Ge/InGaAs interface even in the case of small elastic deformations in the strained film. Possible mechanisms of the formation of edge MDs have been considered, including (i) accidental collision of complementary parallel 60° MDs propagating in the mirror-tilted {111} planes, (ii) induced nucleation of a second 60° MD and its interaction with the primary 60° MD, and (iii) interaction of two complementary MDs after a cross-slip of one of them. Calculations have demonstrated that a critical layer thickness (h c ) for the appearance of edge MDs is considerably smaller than h c for 60° MDs.  相似文献   

18.
The influence of the GaAs cap layer thickness on the luminescence properties in strained In0.20Ga0.80As/GaAs single quantum well (SQW) structures has been investigated using temperature-dependent photoluminescence (PL) spectroscopy. The luminescence peak is shifted to lower energy as the GaAs cap layer thickness decreases, which demonstrates the effect of the GaAs cap layer thickness on the strain of InGaAs/GaAs single quantum wells (SQW). We find the PL quenching mechanism is the thermal activation of electron hole pairs from the wells into the GaAs cap layer for the samples with thicker GaAs cap layer, while in sample with thinner GaAs cap layer exciton trapping on misfit dislocations is dominated.  相似文献   

19.
The α-Fe2O3/α-Al2O3 heterostructure interfaces have been studied using transmission electron microscopy (TEM). The interface exhibited coherent regions separated by equally spaced misfit dislocations. The misfit dislocations were demonstrated to be edge dislocations with dislocation spacing of ∼4 nm. The strain fields around the misfit dislocation core were mapped using a combination of geometric phase analysis and high-resolution transmission electron microscopy images. The strain measurement results were compared with the Peierls–Nabarro dislocation model and the Foreman dislocation model. These comparisons show that the Foreman model (a = 2) is the most appropriate theoretical model to describe the strain fields of the dislocation core.  相似文献   

20.
Nanodimensional ferroelectric heteroepitaxial Ba0.8Sr0.2TiO3 films grown by the layer-by-layer mechanism on MgO(100) substrates are examined by the X-ray diffraction and transmission electron microscopy methods. It is established that, when the thickness of the film changes, the stress relaxation proceeds via generation of misfit dislocations at the film-substrate interface. There exists a critical thickness (≈40 nm) of the film below and above which the film possesses tensile and compression stresses, respectively. Examples of how the stresses influence the insulating properties of the films are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号