首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 187 毫秒

1.  尖椒叶片叶绿素含量的近红外检测分析实验研究  被引次数:5
   蒋焕煜  应义斌《Guang pu xue yu guang pu fen xi = Guang pu》,2007年第27卷第3期
   应用傅里叶漫反射近红外光谱技术探讨了尖椒叶片叶绿素含量的无损检测方法.利用偏最小二乘法和主成分回归法分别建立了尖椒叶片叶绿素含量与漫反射光谱间的数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行对比分析.结果表明,用傅里叶变换光谱仪采集的原始光谱经平滑和基线校正对结果的影响不是很明显;利用PLS建模获得的结果明显好于采用PCR方法建模;原始光谱经二阶微分获得的预测结果比一阶微分光谱和原始光谱的预测结果好;剔除异常样本后,在全波段范围内原始光谱经二次微分的预测相关系数达到0.975 37,校正均方根误差和预测均方根误差分别为2.33和5.49.本研究说明,应用近红外漫反射光谱检测叶片叶绿素含量是可行的,可为今后快速无损检测叶片叶绿素含量提供理论依据.    

2.  近红外漫反射光谱检测梨内部指标可溶性固性物的研究  被引次数:2
   刘燕德  孙旭东  陈兴苗《光谱学与光谱分析》,2008年第28卷第4期
   旨在建立近红外漫反射光谱与梨水果内部可溶性固形物之间的关系,以评价近红外漫反射光谱在测量梨水果内部指标可溶性固形物的应用价值。应用近红外光谱(350~1800nm),采用多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS)三种不同的数学校正方法对梨水果的可溶性固形物(SSC)进行了定量分析,并且对梨水果不同位置的吸光度原始光谱,一阶微分和二阶微分三种不同预处理情况下的模型进行了最优化分析。在梨水果赤道部位预测结果较为理想,采用一阶微分预处理方法下应用PLS方法。研究结果为预测集的相关系数为0.8517,预测样本均方根误差为0.8793。研究表明,近红外漫反射光谱可以作为一种准确、可靠和无损的检测方法用于评价梨水果内部指标可溶性固形物。    

3.  近红外漫反射用于检测苹果糖度及有效酸度的研究  被引次数:19
   刘燕德  应义斌  傅霞萍《Guang pu xue yu guang pu fen xi = Guang pu》,2005年第25卷第11期
   提出了应用近红外漫反射光谱技术并结合光纤传感技术快速检测苹果糖度和有效酸度的新方法。以傅里叶变换光谱仪(12500-4000cm^-1)为试验仪器,以120个红富士苹果为标准样品并结合偏最小二乘法,建立了苹果糖度、有效酸度的定量预测数学模型。试验结果为:样品预测值和真实值之间的相关系数分别为0.970,0.906,标准校正误差(SEC)分别为0.261,0.0562,标准预测误差(SEP)分别为0.272,0.0562.偏差(Bias)分别为0.011,0.0115。通过本研究表明:应用近红外光谱漫反射技术在10341~5461cm^-1光谱波长范围内对苹果糖度的无损检测和在10341-3818cm^-1有效光谱范围内对有效酸度的无损检测具有可行性。    

4.  苹果可溶性固形物和糖酸比可见/近红外漫反射与漫透射在线检测对比研究  
   刘燕德  吴明明  李轶凡  孙旭东  郝勇《光谱学与光谱分析》,2017年第37卷第8期
   可溶性固形物和糖酸比是苹果内部品质主要评价指标之一.为此进行苹果糖酸比和可溶性固形物可见/近红外漫反射和漫透射对比检测研究.180个冰糖心和红富士样品被分成建模集和预测集(136:44),分别用于建立偏最小二乘模型和验证模型的预测能力.在运动速度5个/秒时,采集了冰糖心和红富士两种样品的可见近红外光谱.漫反射和漫透射可见近红外光谱经多元散射校正、标准正态变量变换、基线校正等预处理后,建立了偏最小二乘回归模型.未参与建模的44个样品用于评价模型的预测能力,经比较,漫透射检测方式优于漫反射检测方式,主要因为漫透射检测方式能更有效地克服杂散光.可溶性固形物模型预测相关系数达到0.936,预测均方根误差为0.476°Brix;糖酸比模型预测相关系数达到0.785,预测均方根误差为10.94.研究结果表明:应用可见/近红外漫透射光谱技术,可实现苹果可溶性固形物和糖酸比在线检测.为大宗水果内部品质分选提供了技术支持和参考依据.    

5.  近红外光谱结合膜富集技术测定饮料中微量邻苯二甲酸二异辛酯的含量  被引次数:1
   陈贵平  童佩瑾  耿金培  李晓玉  李秀勇  杜一平《分析测试学报》,2012年第31卷第5期
   提出了一种基于在线膜富集的近红外漫反射光谱技术,对饮料中的微量塑化剂邻苯二甲酸二异辛酯(DEHP)进行快速检测。采用聚醚砜膜对饮料中的DEHP进行富集,将富集DEHP的膜直接进行近红外漫反射检测。参考DEHP的透射近红外光谱,对波数进行选择,以4 420~4 060、4 700~4 540、6 040~5 600cm-1作为建模的波数区间。通过比较原始光谱、多元散射校正、一阶求导、二阶求导及其组合,考察了光谱预处理方法对模型的影响,用去一交互验证法建立了偏最小二乘(PLS)模型,并用所建立的校正模型对校正集样品进行了预测。结果表明,在选定的波数区间,当用一阶求导对校正集光谱进行预处理时,所建立的模型对校正集的预测效果最佳,在隐变量数为7时,对校正集所有样品的校正均方根误差(RMSEC)为0.188 7mg/L。用此模型对预测集样品进行预测时,DEHP的质量浓度在0.5~5.0 mg/L范围内,预测均方根误差(RMSEP)为0.232 4 mg/L,平均相对预测误差为6.29%。    

6.  近红外光谱的结球甘蓝可溶性糖含量测定  
   李鸿强  孙红  李民赞《光谱学与光谱分析》,2018年第10期
   结球甘蓝是一种富含碳水化合物的常见蔬菜,可溶性糖含量是决定其品质的重要参数。可溶性糖易溶于水,是蔬菜和水果口味的有效调节剂。作为碳水化合物,可溶性糖由三种元素C,H和O组成,其分子吸收光谱主要由被检测材料的分子中C—H,O—H和C—O等基团的组合频率吸收和倍频吸收组成,包含丰富的有机物信息。因此,采用近红外光谱和化学计量学方法,探索结球甘蓝可溶性糖含量的快速检测方法。用德国布鲁克公司的MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集161份结球甘蓝样本光谱数据。波数范围:12 800~4 000cm~(-1)(780~2 500nm)。蒽酮比色法测量样本的可溶性糖。综合应用马氏距离法(MD)和蒙特卡洛交叉验证法(MCCV)剔除异常样本,采用Kennard-Stone(K-S)法将样本按照给定比例划分为校正集和验证集。分别使用Savitzky-Golay卷积平滑(S-G),一阶导数(FD),二阶导数(SD),多元散射校正(MSC)和变量标准化(SNV)及它们的组合共12种方法对样本进行光谱预处理,获得最佳预处理方法,提高光谱数据的信噪比。采用竞争性自适应重加权采样法(CARS)筛选偏最小二乘回归(PLS)模型中回归系数绝对值大的波数点,去掉回归系数绝对值小的波数点,以有效选择与所测特性值相关的最优波数组合,获得具有良好鲁棒性和强预测能力的校正模型。使用模型决定系数R2、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)作为模型精度评价指标。根据蒙特卡洛交叉验证法和马氏距离剔除异常样本的原理,共剔除10个光谱或者化学值异常的样本。最终参与建模分析的样本个数为151。异常样本剔除后,通过K-S法将样本按照3∶1被分成校正集(110个样本)和验证集(41个样本)。使用原始光谱数据,预处理后的光谱数据和对应于优选波数的光谱数据,建立PLS模型。结果表明,利用MSC+FD光谱预处理可以提高建模精度,校正集R2从处理前的0.68增长到0.93,MSC+FD是本研究中理想的光谱数据预处理方法。利用CARS法共优选了84个建模波数。在12 000~10 000cm~(-1)波数区域内,有O—H键2级和C—H键3级倍频伸缩振动吸收,此区域主要的背景信息为水和其他含氢基团,在此区域内共包含了36个选定的波数。在8 500~6 000cm~(-1)区域,存在糖类和水的O—H键的1级倍频伸缩振动吸收,葡萄糖的O—H键的1级倍频伸缩振动吸收,该区域是包含反映可溶性糖成分的主要光谱区间,背景影响较小,CARS方法在此区域共选择了15个建模波数。5 800~4 000cm~(-1)区域与12 000~10 000cm~(-1)区域相似,包含的选定波数多,CARS方法在此区域选择了33个建模波数。利用CARS对参与建模的波数进行优选,减少了无关信息,降低了模型的复杂度,选择的波数不但引入了表征待测组分的光谱,同时还引入了代表背景信息的光谱,使得校正模型适应性增强。建立了结球甘蓝可溶性糖的全谱PLS模型,根据CARS波数优选结果,建立了结球甘蓝可溶性糖的CARS-PLS模型。对于全谱PLS定量模型,校正集的决定系数R2为0.93,RMSECV为0.157 2%,RMSEP为0.132 8%。对于CARS-PLS模型,校正集的决定系数R2为0.96,RMSECV为0.076 8%,RMSEP为0.059 4%。数据表明,两种模型具有相当的R2,但CARS-PLS模型的RMSECV是全谱PLS模型的1/2。RMSEP也接近1/2,CARS-PLS模型比全谱PLS定量模型所用建模变量少,模型得到简化,精度更优。用CARS-PLS模型对验证集41个样本进行预测,预测集决定系数R2为0.86,预测标准误差为0.059 4%。提供了一种工作效率较高的结球甘蓝质量无损检测方法。    

7.  基于近红外光谱和变量优选的棉麻混纺织物棉含量快速检测  
   孙通  耿响  刘木华《光谱学与光谱分析》,2014年第12期
   纺织品纤维成分的快速检测对其生产过程质量监控、贸易和市场监督均具有重要的意义。利用近红外光谱技术联合变量优选对棉麻混纺织物中的棉含量进行快速检测研究。采用NIRFlex N-500型傅里叶近红外光谱仪在4 000~10 000cm-1光谱范围内采集样本的反射光谱,对样本光谱进行范围初选和预处理分析。在此基础上,利用UVE(uninformative variables elimination),SPA(successive projections algorithm)及CARS(competitive adaptive reweighted sampling)方法对光谱变量进行优选,再应用PLS(partial least squares)建立棉麻混纺织物中的棉含量预测模型。最后,采用最优预测模型对未参与建模的样本进行预测。研究结果表明,4 052~8 000cm-1光谱范围为棉含量较优的建模光谱范围。CARS变量选择方法能较为有效地提高预测模型的精度,CARS-PLS模型的校正集、预测集相关系数和均方根误差分别为0.903,0.749和8.01%,12.93%。因此,近红外光谱联合CARS变量优选可以用于棉麻混纺织物棉含量的快速检测,CARS方法可以有效简化预测模型,提高预测模型性能。    

8.  基于可见-近红外光谱技术预测茶鲜叶全氮含量  被引次数:5
   胡永光  李萍萍  母建华  毛罕平  吴才聪  陈斌《光谱学与光谱分析》,2008年第28卷第12期
   为快速无损监测茶树氮素营养及其生长状况,基于可见-近红外光谱技术建立了茶鲜叶全氮含量的预测模型。以茶鲜叶为对象,田间试验使用便携式光谱仪采集叶片漫反射光谱信息,通过不同预处理和统计分析,建立茶鲜叶全氮含量预测的光谱模型。试验共采集111个样品,其中86个样品作校正集,25个样品作预测集。通过一阶导数与滑动平均滤波相结合的预处理方法,用7个主成分建立的偏最小二乘模型最好,其校正集均方根误差(RMSEC)为0.0973,预测集的相关系数为0.8881,预测均方根误差(RMSEP)为0.1304,预测的平均相对误差为4.339%。研究结果表明,利用可见-近红外光谱技术可以很好地预测茶鲜叶全氮含量,对于快速实时监测茶树长势和施肥管理具有重要指导意义。    

9.  应用数字傅里叶滤波方法提高近红外光谱多元校正模型稳健性的研究  被引次数:2
   李庆波  张广军  徐可欣  汪曣《Guang pu xue yu guang pu fen xi = Guang pu》,2007年第27卷第8期
   在近红外光谱多元校正方法实际应用中,经常遇到这样的情况,近红外光谱校正模型仅适用于建模时的测量条件,而在测量条件稍有变化时就无法实现样品的准确预测.文章主要研究采用数字傅里叶滤波预处理方法提高近红外光谱多元校正模型稳健性.文章将数字傅里叶滤波预处理方法应用于葡萄糖水溶液的温度实验,实验1和实验2分别在恒温25 ℃和恒温30 ℃进行光谱测量;实验3在未控温的室内环境下进行光谱测量.采用实验1和实验2的样品作为训练集进行模型训练和优化,模型建立完毕之后,采用实验3的样品作为验证集进行模型预测能力评价.结果表明,如果训练集样品未经过预处理而直接建立偏最小二乘(PLS)多元校正模型,则验证集样品均方根预测误差(RMSEP)为664.47 mg·dL-1.而训练集和验证集样品经过傅里叶滤波预处理之后分别进行PLS建模和预测,验证集样品均方根预测误差(RMSEP)降低为58.43 mg·dL-1,样品预测值与参考值的相关性也得到提高.可见,采用数字傅里叶滤波预处理方法可以提高多元校正模型的稳健性.    

10.  哈密瓜坚实度的高光谱无损检测技术  被引次数:1
   李锋霞  马本学  何青海  吕琛  王宝  田昊《光子学报》,2013年第42卷第5期
   提出利用高光谱对哈密瓜坚实度进行检测的方法,对比分析了不同波段范围、不同预处理法、不同光程校正法和不同定量校正算法对哈密瓜坚实度预测模型准确度的影响.实验结果表明,在500~820 nm波段光谱区域,采用偏最小二乘法对经过标准正则变换校正的一阶微分处理的光谱建模效果较优,其校正集相关系数为0.873,校正均方根误差为4.18N,预测集相关系数为0.646,预测均方根误差为6.40N.研究表明,应用高光谱对哈密瓜坚实度的无损检测研究具有可行性.    

11.  基于近红外漫反射光谱的丁香蓼叶片重金属铜含量快速检测研究  
   刘燕德  施宇  蔡丽君《光谱学与光谱分析》,2012年第32卷第12期
   植物中的重金属离子以一定形式与具有近红外吸收的有机分子基团结合,因此可以借助近红外光谱技术间接检测其重金属离子含量。研究了基于近红外漫反射光谱技术快速检测丁香蓼叶片中重金属铜含量的方法。通过不同光谱数据预处理方法的对比,结合偏最小二乘法,建立了丁香蓼叶内重金属铜含量近红外光谱检测定量模型。实验结果为,经过平滑处理的光谱建模效果较理想,其建立的校正相关系数为0.950,校正均方根误差为5.99;外部验证相关系数为0.923,预测均方根误差为7.38。研究表明,近红外漫反射光谱技术用于丁香蓼叶片中重金属铜含量的快速检测具有可行性。    

12.  可见/近红外光谱漫透射技术检测西瓜坚实度的研究  被引次数:4
   田海清  应义斌  陆辉山  徐惠荣  谢丽娟  傅霞萍  于海燕《光谱学与光谱分析》,2007年第27卷第6期
   西瓜是一种广受世界各国消费者喜爱的水果,坚实度是西瓜的一个重要品质指标,文章利用可见/近红外漫透射光谱技术进行了西瓜坚实度(FM)的无损检测研究.采用偏最小二乘法(PLS)和主成分回归法(PCR)建立了FM与漫透射光谱的无损检测数学模型,对比分析了不同光谱预处理方法(原始光谱%T,一阶微分处理光谱D1(%T),二阶微分处理光谱D2(%T)以及光谱的Savitsk-Golay法滤波)对模型预测性能的影响.根据模型相关系数(r)及预测平方根标准偏差(RMSEP)进行了不同模型的预测性能对比,结果表明:光谱经二阶微分处理并使用Savitsky-Golay法滤波后,采用PLS法可以得到最好的FM建模结果(r=0.974,RMSEP=0.589 N).研究表明:应用可见/近红外漫透射光谱技术检测西瓜的坚实度是可行的,为今后快速无损评价大果形厚果皮类水果坚实度提供了理论依据.    

13.  近红外漫反射光谱检测赣南脐橙可溶性固形物的研究  被引次数:4
   刘燕德  欧阳爱国  罗吉  陈兴苗《光谱学与光谱分析》,2007年第27卷第11期
   研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法.以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型.实验结果为:在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791.实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性.    

14.  小波变换和连续投影算法在火龙果总酸无损检测中的应用  
   罗霞  洪添胜  罗阔  代芬  吴伟斌  梅慧兰  林凛《光谱学与光谱分析》,2016年第5期
   应用可见/近红外光谱技术、小波变换(WT)和连续投影算法(SPA),对火龙果总酸含量(TA)进行精确、快速的无损检测,为火龙果内部品质无损检测提供科学依据。利用 Maya2000光纤光谱仪采集380~1099 nm范围的火龙果漫反射光谱数据,通过 WT 消噪、SPA 优选波长和偏最小二乘回归(PLSR)分析方法,建立了火龙果总酸的定量预测模型。试验结果表明:经过 WT消噪联合 SPA优选波长压缩光谱变量后建立的 WT-SPA-PLSR模型,预测精度都高于全谱 PLSR 模型。由全部样本的原始光谱变量作为输入变量建立PLSR模型的预测相关系数(Rp)为0.851394,预测均方根误差(RMSEP)为0.086848;全部样本的原始光谱数据使用 dbN(N=2,3,…,10)小波进行分解消噪,其中消噪效果最优的是 db4小波2层分解(db4-2),WT-PLSR模型的Rp 为0.915635,RMSEP为0.066752,小波变换消噪后的光谱预测模型精度明显提高;原始光谱经过 db10-3小波消噪联合 SPA算法,从570个光谱变量中优选出530,545,604,626,648,676,685,695,730,897,972,1016 nm共12个变量作为输入变量,建立 WT-SPA-PLSR预测模型,模型的RP 为0.88283,RMSEP为0.07739。SPA算法适合火龙果TA模型的光谱变量选择,能够有效提取与总酸相关度高的波长变量,增加了预测模型的精度和稳定性。研究结果表明小波变换技术联合连续投影算法的漫反射近红外光谱无损检测火龙果总酸含量具有可行性。    

15.  利用近红外光谱技术预测粗皮桉木材弹性模量  被引次数:3
   赵荣军  霍小梅  张黎《光谱学与光谱分析》,2009年第29卷第9期
   采用近红外光谱分析技术,对粗皮桉木材弹性模量进行了快速预测研究.使用快速傅里叶变换(FFT)分析法和常规力学测试方法测定了粗皮桉木材无疵小试样的弹性模量,并用近红外光谱仪采集试样径切面和弦切面的近红外漫反射光谱,对原始光谱进行二阶导数预处理,并选择410~2 480 nm光谱段建立回归模型.以2/3的试样作为校正集建立弹性模量的偏最小二乘法校正模型,以1/3/的试样作为预测集对模型进行验证.结果表明,粗皮桉木材的弹性模量与近红外光谱之间有较好的相关性,纵向弹性模量和抗弯弹性模量的预测模型的相关系数分别为0.93和0.81,相对分析误差分别为2.70和1.71.利用近红外光谱分析方法可以实现对粗皮桉木材无疵小试样弹性模量的快速预测.    

16.  基于NIRS技术的食用醋品牌溯源研究  被引次数:2
   管骁  刘静  古方青  杨永健《光谱学与光谱分析》,2014年第34卷第9期
   以四种品牌152组食用醋样品为研究对象,采用漫反射与透射两种近红外光谱采集模式分别进行光谱数据采集,并以此建立了食用醋品牌溯源模型,重点考察光谱采集模式、光谱预处理方法等对溯源模型精度的影响。结果表明,选取114组样品为训练集,原始光谱数据经过多元散射校正、二阶求导预处理后,采用偏最小二乘判别分析法(PLS1-DA)建立的食用醋NIRS品牌溯源模型,对38组测试集样品进行预测,透射光谱模型的决定系数(R2)、校准均方根误差(root-mean-square error of calibration,RMSEC)、预测均方根误差(root-mean-square error of prediction,RMSEP)分别为0.92,0.113,0.127,正确识别率为76.32%;漫反射光谱模型R2,RMSEC,RMSEP分别为0.97,0.102,0.119,正确识别率为86.84%。由此说明,近红外光谱结合PLS1-DA可以用来建立食用醋品牌溯源模型,且漫反射光谱模型预测效果更好。    

17.  基于可见光和近红外光谱鲜猪肉蒸煮损失和嫩度检测的研究  被引次数:3
   Hu YH  Xiong LY  Jiang GZ  Liu C  Guo KQ  Satake T《光谱学与光谱分析》,2010年第30卷第11期
   蒸煮损失和嫩度是决定猪肉的食用品质的重要指标,文章提出了可见光/近红外漫反射光谱检测真空包装猪肉的蒸煮损失和嫩度的新方法,从而实现对其快速、无损、无污染测定.利用光谱专用分析软件Unscrambler9.6对采集的近红外漫反射光谱分别进行卷积平滑、二阶微分法和多元散射校正预处理,用偏最小二乘法(PLS)建立其定量校正模型.结果表明近红外光谱漫反射法的预测值与常规方法测定值的相关系数分别为0.81和0.78.该研究结果说明基于可见光/近红外光谱漫反射光谱的检测方法简便易行,是无损检测猪肉的蒸煮损失和嫩度的较好方法.    

18.  猪肉pH值的可见近红外光谱在线检测研究  被引次数:6
   廖宜涛  樊玉霞  伍学千  成芳《光谱学与光谱分析》,2010年第30卷第3期
   pH值是猪肉关键品质之一,实施在线检测对优化肉品加工工艺、保证产品质量、提高肉及肉制品的经济价值有重要意义。研究应用可见近红外光谱对新鲜猪肉pH值进行在线检测,实验时样品以0.25m.s-1的速度运动,采集其可见近红外漫反射光谱(350~1 000 nm),进行反射距离校正后应用偏最小二乘回归法建立猪肉pH值在线检测模型。研究通过Kennard-stone算法划分样品校正集与预测集,对比了不同的光谱预处理方法(多元散射校正,微分等)对预测结果的影响,并对建模所用光谱变量进行优化。研究发现经过多元散射校正结合一阶微分预处理的模型效果最好,模型预测相关系数为0.905,预测均方根误差为0.051,经过优化的模型建模所用波长变量数减少一半,模型的预测相关系数提高到0.926,预测均方根误差下降至0.045。结果表明可见近红外光谱可用于新鲜猪肉pH值的在线检测。    

19.  基于近红外光谱检测猪肉系水力的研究  
   胡耀华  郭康权  野口刚  河野澄夫  佐竹隆显《光谱学与光谱分析》,2009年第29卷第12期
   为了快速无损无污染得测定猪眼肌的系水力,提出了用近红外漫反射光谱检测真空包装猪肉的系水力的新方法.采用常规的滴水损失法和压力法标定猪肉的系水力.利用光谱专用分析软件Unscramb-ler9.6,对采集的光谱进行平滑,二阶微分预处理,用偏最小二乘法(PIS)建立其定量检测模型.该实验的样本总数为106,将样品分为校正集和检验集.用校正集建立定标方程,用检验集检验定标方程的预测精度.常规方法与近红外光谱漫反射法的预测植的相火系数为0.73~0.79,结果明显要好于近红外透射法和反射光谱法.该研究验证了近红外光谱漫反射法对真空包装后鲜猪肉的系水力的无损检测的可行性.    

20.  近红外透射光谱应用于黄酒酒龄的定性分析  被引次数:8
   于海燕  应义斌  傅霞萍  陆辉山  徐惠荣《光谱学与光谱分析》,2007年第27卷第5期
   应用近红外光谱透射技术,结合化学计量学方法,开展了黄酒酒龄定性鉴别的研究,并对不同光谱预处理方法(未处理、平滑、二阶微分)对酒龄鉴别结果的影响进行了对比分析.试验采用傅里叶变换近红外光谱仪,以86瓶绍兴黄酒为标准样品,并结合不同光谱预处理方法及判别分析法,建立了黄酒酒龄定性鉴别模型.光谱平滑处理对酒龄鉴别结果影响不显著,而微分光谱分析结果最差,近红外原始光谱结合判别分析法的分析结果最优,其校正集正确分类的百分比达98.1%,预测集达90.6%.研究表明,近红外光谱透射技术结合原始光谱及判别分析法可作为一种可靠、准确、快速的检测方法用于黄酒酒龄定性鉴别分析.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号